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Étant donné un mot w sur un alphabet Σ = Z/kZ, on note |w| la longueur et |w|x le nombre 
d’occurrences d’une lettre x ∈ Σ dans le mot w. Deux mots w et w′ sont des jumeaux abéliens, ce 
que l’on note w ≡ w′, si |w|x = |w′|x pour toute lettre x ∈ Σ. Enfin, un mot w est un carré abélien s’il 
admet une factorisation w = uv telle que u ≡ v, et w évite les carrés abéliens si aucun de ses facteurs 
non vides n’est un carré abélien. 

Ci-dessous, on souhaite démontrer qu’il existe des mots arbitrairement longs, sur l’alphabet Σ = Z/5Z, 
qui évitent les carrés abéliens. Dans ce but, on note W le dernier des quatre mots donnés en question 1, 
puis σ : Σ∗ → Σ∗ et ϕ : Σ∗ → Σ∗ les morphismes de monoïdes définis par σ : k 1→ k +1 et ϕ : k 1→ σk(W). 
On suppose alors qu’il existe un mot w, aussi court que possible, évitant les carrés abéliens et tel que ϕ(w) 
n’évite pas les carrés abéliens ; cette supposition se révèlera incorrecte. 

On dit que neuf mots (k, ℓ, m, p, q, r, s, t, u) forment un beau nonuplet si (1) chacun des mots k, ℓ et m 
est vide ou réduit à une lettre ; (2) p est un suffixe de ϕ(k), rs est une factorisation de ϕ(ℓ), u est un 
préfixe de ϕ(m) ; (3) chacun des mots p, r, s et u est de longueur au plus 14 ; et (4) pϕ(q)r ≡ sϕ(t)u, 
tandis que q ≢ ℓt, q ≢ ℓtm, kq ≢ ℓt, kq ≢ ℓtm, qℓ ≢ t, qℓ ≢ tm, kqℓ ≢ t et kqℓ ≢ tm. 

Éviter les carrés abéliens 
 

 
Question 1. Parmi les mots ci-dessous, lesquels sont des carrés abéliens ? Lesquels évitent les carrés abéliens ? 

1 0 2 1 2 0 0 1 2 3 3 0 0 1 2 3 0 1 2 1 0 2 0 4 0 2 0 3 0 4 0 3 0 1 

Question 2. Démontrer que nul mot de longueur 8 sur l’alphabet Z/3Z n’évite les carrés abéliens. 
 

 
Question 3. Comment, à l’aide d’un ordinateur, s’assurer que |w| ⩾ 3 ? 

 

 
Question 4. Pourquoi existe-t-il nécessairement un beau nonuplet (k, ℓ, m, p, q, r, s, t, u) tel que w = kqℓtm ? 

Question 5. Démontrer que |q| − 1 ⩽ |t| ⩽ |q| + 1. 

Question 6. Démontrer que |p|x + 2|q| + 5|q|x + |r|x = |s|x + 2|t| + 5|t|x + |u|x pour toute lettre x ∈ Σ. 

Question 7. Comment, à l’aide d’un ordinateur, s’assurer qu’il n’existe aucun beau nonuplet ? 

Question 8. On suppose les vérifications des questions 3 et 7 effectuées 1. Démontrer, pour tout entier n ⩾ 0, qu’il 
existe un mot w de longueur n sur l’alphabet Σ = Z/5Z qui évite les carrés abéliens. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Cela a pris cinq secondes sur l’ordinateur des examinateurs. 
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Éléments de correction et attentes de l’examinateur 

Question 1. Le premier mot est un carré abélien, donc ne les évite pas. 
Le second mot n’est pas un carré abélien car il compte un seul 2, mais il a le carré abélien 3 3 pour facteur. 
Le troisième n’est pas un carré abélien car il compte un seul 3. En outre, si un de ses facteurs est un carré 

abélien, ce facteur doit contenir une lettre en deux exemplaires, de part et d’autre du 3, donc il contient le seul 3 
du mot et n’est pas abélien malgré tout. 

De même, le quatrième mot n’est pas un carré abélien, car il contient onze 0. De surcroît, si l’un de ses facteurs 
est un carré abélien, intéressons-nous aux lettres autres que 0 dont ce facteur devrait contenir les deux exemplaires. 
Si une lettre λ est coincée entre ces deux exemplaires de µ, on note cela µ → λ, et alors le facteur devra contenir 
deux exemplaires de λ. Ici, on a 2 ↔ 4 ↔ 3, et 1 pointe vers toutes ces lettres. Ainsi, le facteur contient des 2 et 
des 3, mais tous les 2 sont à gauche des 3, donc le facteur n’est pas un carré abélien malgré tout. 

Cette question a pour but de permettre au candidat de s’approprier les concepts de l’énoncé, mais également 
de jauger ses réactions dans un contexte où toute approche basée sur une énumération brutale et exhaustive trouve 
rapidement ses limites. 

Question 2. Essayons de construire un mot qui évite les carrés abéliens. On construit alors un arbre de possibilités, 
que l’on élague le plus possible : il s’agit de l’arbre des préfixes de l’ensemble des mots évidant les carrés abéliens. 
Sans perte de généralité, on s’intéresse uniquement aux mots commençant par les lettres 0 1. 

 

On peut en effet vérifier que chaque extension d’un nœud de cet arbre aboutit à un mot dont un suffixe est un 
carré abélien. Cette tâche est relativement pénible, mais finalement assez rapide, et très simple à mener si l’on est 
méthodique. 

Cette question vise à confirmer que le candidat est capable de se montrer méthodique, ce qui légitimera le fait 
d’invoquer, dans les questions suivantes, qu’il suffit de se ramener à un nombre fini de cas. L’utilisation d’arbres 
préfixes n’était pas spécifiquement attendue, même si celle-ci pouvait s’avérer commode. 

Il est à noter que, comme la question précédente, cette question pouvait s’avérer chronophage, et l’a été en 
pratique. Les examinateurs ont bien sûr tenu compte de cet état de fait : être conceptuellement facile ne signifie 
pas être facile, et ces deux questions sont effectivement assez difficiles. 

Question 3. Il suffit de vérifier, à l’ordinateur, qu’aucun mot w ∈ Σ⩽2 évitant les carrés abéliens n’a une image 
contenant un carré abélien. Pour ce faire, il suffit donc d’énumérer naïvement les 1 + 5 + 52 = 31 mots concernés, 
et de disposer d’un algorithme décidant si un mot est un carré abélien. Cette tâche serait affreusement fastidieuse 
à la main, mais elle est facile à coder. 

Cette question vise, par contraste avec la précédente, à s’assurer que le candidat est à même de proposer une 
approche de nature algorithmique. Ici, effectuer une recherche exhaustive à l’ordinateur n’a rien d’inhumain, au vu 
du petit nombre de cas à traiter aussi bien que de la simplicité des tests à effectuer. En particulier, il n’était pas 
attendu du candidat qu’il discute de la complexité de son programme, celle-ci étant manifestement polynomiale 
(cubique si l’on s’y prend naïvement) en la longueur des mots considérés. 

Question 4. Posons n = |w|. Il suffit de prendre la factorisation suivante en deux moitiés g et d, qui commence 
nécessairement en ϕ(w1), s’arrête en ϕ(wn) par minimalité de n, et nécessite éventuellement de couper un mot ϕ(wi) 
en deux. Nos mots recherchés sont alors ceux représentés ci-dessous. 
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On a bien 2 ⩽ i ⩽ n − 1, car sinon une moitié g ou ℓ sera comprise dans ϕ(w1) ou ϕ(wn), et l’autre sera plus 
longue. En outre, pour éviter les cas bâtards où p, r, s ou u serait de longueur 15 = |W|, on s’autorise à intégrer k, ℓ 
ou m à l’un ou l’autre des mots q ou t. 

Enfin, le mot qℓt est de longueur au moins n − 2, donc n’est pas vide. Par conséquent, si l’une des relations ≡ 
à éviter était satisfaite, on aurait trouvé un facteur non vide de w qui soit un carré abélien. 

 
k  q  ℓ  t  m 

w1 w2...i−1 wi wi+1...n−1 wn 
 

 
 

g d 

 
Cette question est difficile. Son but principal est de mettre en évidence une factorisation de w qui nous 

permettra ensuite d’aboutir à une absurdité. Elle requiert d’oser faire des dessins et de s’intéresser au rapport que 
pourraient avoir tous nos mots avec le mot w dont on a supposé l’existence. Une fois ce pas franchi, la question 
devient d’un seul coup beaucoup plus abordable. 

Question 5. Puisque |p| + 15|q| + |r| = |g| = |d| = |s| + 15|t| + |u|, on sait que 15(|t| − |q|) = |p| + |r| − |s| − |u| 
est majoré, en valeur absolue, par 2 × 14, donc que |t| − |q| vaut au plus 1 en valeur absolue. 

Cette question sert de préparatif à la question suivante. Elle a également pour but de s’assurer que le candidat 
est à même de prendre du recul après le travail minutieux que requerrait la question précédente. Ici, il s’agit 
simplement de comprendre, au moins intuitivement, que |q| et |t| valent à peu près un quinzième de la longueur 
commune des deux moitiés du carré abélien contenu dans ϕ(w), c’est-à-dire g et d. 

Question 6. Le mot W contient deux exemplaires de chaque lettre, ainsi que cinq exemplaires 
surnuméraires de la lettre 0. En d’autres termes, |ϕ(y)|x =  |W|x−y =  2 + 5 × 1x=y. Par 
conséquent, |p|x + 2|q| + 5|q|x + |r|x = |p|x + |ϕ(q)|x + |r|x = |g|x et, de même, |s|x + 2|t| + 5|t|x + |u|x = |d|x. 
Puisque gd est un carré abélien, ces deux quantités sont donc égales. 

La principale difficulté est ici de donner un sens aux quantités données dans l’énoncé. L’apparition des termes |p|x 
et |r|x doit faire penser au nombre de x dans un mot comportant les facteurs p et r, et l’on n’a alors plus guère de 
choix. 

Question 7. Si l’on dispose d’un beau nonuplet et que x est une lettre commune à q et à t, supprimer une occurrence 
de x dans q et dans t nous fournit un autre beau nonuplet. On considère donc un éventuel beau nonuplet pour 
lequel |qt| est minimal : pour toute lettre x ∈ Σ, on a min{|q|x, |t|x} = 0, de sorte que 

±5 max{|q|x, |t|x} = 5(|q|x − |t|x) = |s|x + |u|x − |p|x − |r|x + 2(|t| − |q|) 

est majoré, en valeur absolue, par 7 + 7 + 2, et donc que que max{|q|x, |t|x} ⩽ 2. 
Il existe donc un nombre fini de beau nonuplets potentiels, et il suffit de vérifier qu’aucun d’entre eux n’est 

effectivement beau. 

L’enjeu de cette question difficile est de voir comment se ramener à un nombre de cas fini, comme en question 3, 
c’est-à-dire à ne travailler qu’avec des mots q et t courts. Pour ce faire, vu l’enchaînement des questions, il va 
manifestement falloir exploiter la mystérieuse question 6 et son résultat : au vu de la question 5, elle nous informe 
que |q|x et |t|x sont forcément assez proches. La difficulté principale consiste donc à s’assurer que ces deux quantités 
sont petites, et c’est ici qu’intervient l’idée de supprimer chaque lettre x apparaissant à la fois dans q et dans t. 

Cette question a pour but de permettre aux tout meilleurs candidats de tirer leur épingle du jeu. Il n’était 
pas attendu que ceux-ci terminent la question, mais plutôt qu’ils engagent une discussion avec l’examinateur pour 
proposer des idées à même d’aller dans le bon sens. 

p      
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Question 8. Les questions 3 à 7 démontrent que la supposition effectuée dans l’encadré no 2 est incorrecte. En 
particulier, le morphisme ϕk transforme 0 en un mot de longueur 15k qui évite tout carré abélien, et tout facteur 
de ce mot évite également les carrés abéliens. 

Cette question joue le rôle de conclusion pour le problème. En pratique, il n’était pas attendu qu’elle soit 
abordée. 
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On considère un arbre à n nœuds. L’excentricité d’un nœud est sa distance maximale à un autre nœud 
de l’arbre. Le diamètre d’un arbre est le plus long chemin entre deux nœuds de l’arbre. Le rayon d’un 
arbre est la plus petite excentricité d’un nœud. 

Nœuds importants d’un arbre 
 

 
Question 1. Donner un algorithme pour déterminer l’excentricité d’un nœud, et sa complexité. 

Question 2. Montrer qu’il y a toujours au plus deux nœuds d’excentricité minimale. 

Question 3. Donner un algorithme qui identifie efficacement un tel nœud d’excentricité minimale. 

Question 4. Montrer que le rayon r d’un arbre et le diamètre D d’un arbre vérifient r = ⌈D/2⌉. 

Question 5. Donner un algorithme efficace pour identifier le plus long chemin dans un arbre. 

Question 6. On imagine que ces nœuds représentent des ordinateurs connectés entre eux et on doit choisir un 
unique nœud qu’on va relier à Internet, qui partagera sa connexion avec sa composante connexe. En cas de coupure 
d’une unique arête de l’arbre, on souhaite minimiser le nombre d’ordinateurs privés d’Internet. Donner une méthode 
qui identifie le nœud à connecter à Internet dans le pire cas. 

Question 7. On suppose maintenant l’arbre pondéré par des poids entiers wuv entre u et v. On s’intéresse à 
colorier k nœuds de façon que si d(v) est le plus court chemin du nœud v à un nœud colorié, la valeur maximale 
de d sur le graphe soit aussi petite que possible. On demande de renvoyer cette distance dans le pire cas. 
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
   

fils de 1 

Éléments de correction 

Question 1. On fait un parcours en profondeur à partir du nœud choisi u, en O(n). L’excentricité e(u) correspond 
à la hauteur h(u) dans l’arbre formé par le parcours en profondeur et vérifie 

 

e(u) = h(u) = 1 + max 
v fils de v 

h(u). 

Question 2. Supposons qu’il y ait deux nœuds u, v d’excentricité minimale e(u) = e(v). On va montrer qu’ils 
sont forcément reliés. Supposons par l’absurde qu’il existe un x voisin direct de u sur le chemin de u à v. On 
considère un plus long chemin partant de u. Si celui-ci ne passe pas par x, e(v) > e(u) ce qui est contradictoire. 
Donc il passe par x d’excentricité au moins e(u) par minimalité de u ; si à présent on considère un plus long 
chemin partant de x : s’il ne passait pas par u, on aurait e(u) > e(x) ⩾ e(u). Mais s’il passe par u alors on a 
encore e(v) > e(x) ⩾ e(u) = e(v). Donc u et v sont reliés et si on avait 3 nœuds d’excentricité minimale, ils seraient 
reliés deux à deux et on aurait un cycle. 

Question 3. Intuitivement, on souhaite partir des feuilles, les nœuds de degré 1, et élaguer au fur et à mesure. 
Une file de priorité permettrait de faire cela en O(n log n) mais il existe une solution linéaire. Celle-ci consiste à 
initialiser une file aux feuilles. Lorsqu’on extrait un nœud, on l’enlève et on met à jour les degrés de ses voisins. Si 
un voisin devient une feuille (deg(v) = 1), on l’enfile. Le dernier nœud traité fait partie du centre. 

Question 4. Comme dit à la question 1, si on enracine l’arbre en un nœud v, l’excentricité e(v) correspond à la 
hauteur de l’arbre obtenu. Soit v est sur un plus long chemin, auquel cas le diamètre D est au plus 2e(v). Soit v 
n’est pas sur un plus long chemin, et si on note u le nœud le plus haut d’un plus long chemin et w son extrémité 
la plus basse, on a que le diamètre D est au plus 2d(u, w) < 2e(v). Comme c’est vrai pour tout nœud v, c’est en 
particulier vrai pour le rayon : D ⩽ 2r. Si l’on prend un plus long chemin, s’il est de longueur paire il a un nombre 
impair de nœuds et celui du milieu a pour excentricité la moitié (si elle était plus grande, on trouverait un chemin 
encore plus long). Si le plus long chemin est de longueur impaire 2k + 1, alors un des deux nœuds du milieu est à 
distance k + 1 d’un autre nœud du chemin et son excentricité est k + 1. On a donc r = ⌈D/2⌉. 

Question 5. Une méthode qui fonctionne mais difficile à prouver rigoureusement 2 est de faire deux parcours en 
profondeur. On choisit un nœud a et on identifie le nœud le plus éloigné b avec un DFS. Ensuite, on trouve le 
point c le plus éloigné de ce point b. Le diamètre est la distance etre b et c. 

On peut plutôt le résoudre en un seul parcours par programmation dynamique. On choisit un nœud arbitraire a 
comme racine de l’arbre puis on s’intéresse à calculer deux quantités, h(u) la hauteur de u i.e. la longueur maximale 
d’une branche partant de u et t(u) la longueur maximale d’un chemin dans le sous-arbre enraciné en u. La quantité 
recherchée est t(a) où a est la racine. Si u est une feuille alors on a h(u) = t(u) = 0. Sinon on a : 

 

h(u) = 1 + max 
v fils de u 

h(v) 

 
t(u) = 

max(h(u), t(v)) si u n’a qu’un fils v 

max max  t(v), 2 + max 
v u v ,v 

h(v1) + h(v2) 
u 

sinon. 

Question 6. Il s’agit pour cette question de trouver le centroïde de l’arbre, qui n’est pas confondu avec le centre 

de l’arbre (i.e. les nœuds d’excentricité minimale), cf. . On peut le faire en un seul parcours qui calcule 
la taille s(u) de chaque sous-arbre. Si u est une feuille alors s(u) = 1 qui est aussi le pire cas. Sinon pour chaque 
fils v de u on calcule le pire cas entre maxv s(v) (couper l’arête du fils) et n − s(u) (couper l’arête du père). 

Question 7. Dichotomie sur la pire distance et on regarde s’il existe un choix des nœuds qui réalise cette distance. 
C’est un problème de programmation dynamique : on choisit une racine arbitraire, chaque sous-arbre est soit couvert 
avec le nœud coloré le plus proche à distance d ; soit a des nœuds non couverts, le plus loin étant à distance d. 

 

2. Eindhoven Tuesday Afternoon Club et al. (2002). “On computing a longest path in a tree”. In : Information Processing Letters 
81.2, p. 93-96 
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