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Travail demandé :

Il vous est demandé d’étudier puis de présenter le texte joint a tra-
vers un exposé de synthese d'une durée comprise entre 15 et 20 minutes.

Si I'étude de la totalité du dossier et la préparation d’un exposé
cohérent dans la durée impartie ne vous parait pas possible, vous pou-
vez décider de vous limiter & une partie du dossier.

Remarques générales :

1. Les textes proposés, quelle que soit leur origine, peuvent présenter
des défauts (coquilles typographiques, négligences ou sous-entendus de
l’auteur, voire erreurs. ..) qui, sauf exception, n’ont pas été corrigés.

2. Les textes proposés peuvent contenir des exercices qu’il n’est pas
demandé de résoudre. Néanmoins, vous pouvez vous aider des énoncés
de ces exercices pour enrichir votre exposé.

3. Vous pouvez annoter les documents qui vous sont fournis. Vos an-
notations ne seront pas regardées par I’examinateur.

Remarque particuliere :

Dans le document, il est quesiton de 1’enveloppe convexe d’un sous-
ensemble de R? : I'enveloppe convexe de £ C R? est le plus petit
sous-ensemble convexe (au sens de l'inclusion) de R™ qui contienne E.



SI NOUS FAISIONS DANSER LES RACINES?

REsuME. Cet article tente de rendre un modeste hommage au géometre Bill
Thurston, disparu le 21 aotut 2012. Nous allons présenter quelques-unes de ses
observations (visuelles bien entendu!) sur un théoréme de Gauss (en 1836)
et Lucas (en 1874). L’article s’adresse aux lecteurs ayant déjé une certaine
connaissance sur les notions de fonctions, dérivées, polynémes et nombres
complexes.

1. INTRODUCTION

La dérivée d’un polynéme est encore un polynéome. Par exemple pour P(x) =
xt — 72?2 4+ 3, on trouve P'(z) = 4z3 — 14z.

Comment cela, mon polynéome a des racines ? Les racines d’'un polynome P, ce
sont les nombres complexes z solutions de ’équation P(z) = 0. Voici quelques
exemples : le polynoéme z? — 1 a deux racines : 1 et —1. Le polynome 2> + 1 a
deux racines : i et —i. Le polynoéme 23 n’a qu’une racine : 0.

Factorisation totale. Il y a un théoreme tres utile, appelé LE théoréme fonda-
mental de l'algebre (et parfois théoréme de d’Alembert-Gauss), qui dit qu'un
polynéme, qu’il soit a coefficients réels ou complexes, a toujours une racine com-
plexe. Une conséquence ! est qu’un polynéme de degré m se factorise ainsi :

Pz)=A(z—a1) (2 —am)

ou A et aq,...,a, sont des nombres complexes. Il possede donc m racines, cer-
taines pouvant se répéter comme dans P(z) = (z — 1)(z — 1)(z + 2). Une racine
qui se répete est appelée racine multiple.

Si P est de degré m, alors P’ est de degré m — 1, donc il possede m — 1 racines,
qui peuvent tres bien se répéter.

Y a-t-il une relation entre les racines complexes de P et celles de P'? Si w est
une racine multiple de P, alors c’est une racine de P’. Si le degré de P est égal &
deux, alors la racine de P’ est le milieu du segment reliant les deux racines de P
(et si P a une racine double, c’est aussi la racine de P’). Si P est de degré 3, il
y a également une caractérisation géométrique des racines de P’, nettement plus
élaborée, due a Marden. Dans le cas général, il n’y a pas de réponse simple, mais
on a le joli théoreme suivant :

Théoréme 1.1 (GauB-Lucas, version classique). Pour tout polynéme P (de degré
un ou plus), l'enveloppe convezxe des racines de P contient les racines de P’.

1. Ce n’est pas une conséquence immédiate : il faut utiliser un autre théoréme, qui dit que
si a est une racine de P, alors P(z) = (z — a)Q(z) ou Q est un polynéme.
1
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D’apres Wikipedia, ce résultat est utilisé de maniere implicite en 1836 par Carl
Friedrich Gauf3 et prouvé en 1874 par Félix Lucas.

Qu’est-ce qu'une enveloppe convexe ? On peut imaginer un terrain avec un cer-
tain nombre d’arbres, qu’on veut entourer par un ruban le plus court possible. Le
terrain entouré est I’enveloppe convexe de ces arbres. Certains arbres touchent le
bord. D’autres (peut-étre) sont a I'intérieur du terrain. Ce terrain est en particu-
lier convexe, au sens ou il contient le chemin droit reliant n’importe quel couple
de ses points. L’enveloppe convexe est un polygone et inclut sa frontiere et ses
sommets.

Il existe au moins deux autres définitions équivalentes de ’enveloppe convexe
d’une collection finie de points : d’une part c’est l'intersection de tous les demi-
plans contenant tous les points; d’autre part c’est I’ensemble des barycentres des
points a coefficients positifs ou nuls.

Nous vous avons mijoté un exemple particulier : P(z) = (22 +2)(z — 4)%. 1l se
factorise ainsi : P(z) = (2 +iv2)(z — iv2)(z — 4)(z — 4) et se développe ainsi :
P(z) = 2* — 823 + 1822 — 162 + 32. Sa dérivée est P'(2) = 423 — 2422 + 362 — 16
se factorise ainsi : P'(2) =4(z—1)(z —1)(z —4). L’enveloppe convexe des racines
de P est le triangle de sommets iv/2, —i\/2 et 4 et les racines de P’ sont 1, 1 et
4, qui sont bien dans I’enveloppe convexe, la derniere étant pile sur un sommet.
Dans l'image ci-dessous, nous avons figuré les racines de P comme des arbres
et fait appel & des moutons pour celles de P’. Le bord de I’enveloppe convexe
correspond a la cloture orange (I’épaisseur des arbres nous a obligés a la décaler
légerement).

2. UNE PREUVE CLASSIQUE DU THEOREME DE GAUSS-LUCAS

Si on dérive P(z) = A(z—ay) -+ (2 — am), on trouve que P’ est la somme pour
j allant de 1 & m des produits A(z —ay)--- (2 — a,,) dont on a retiré le facteur
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(z —ay) :
— P(2)
P'(z) = .
j; z — aj
Autrement dit
Pl(z) & 1
P(z) a ; z — a;

1 partir de 13 il y a plusieurs manicres de procéder. Celle que nous présentons a
une saveur géométrique et un rapport avec la suite.

Rappelons la méthode pour calculer I'inverse d’'un nombre complexe z : si
z = x + iy, alors son module |z| est \/22 + y? et son conjugué z est x —iy. On a
la relation 2z = |z|?, ou encore, 1 = % si z est non nul.
L’équation citée plus haut se traduit alors ainsi :

Z S
|2 —aj*

Pour des raisons pratiques, on passe au conjugué dans 1’équation plus haut
puis on multiplie par -1. On obtient :

Z PR
|z — a;]*
Si z est une racine de P’ et pas de P alors P'(2)/P(z) = 0 donc on obtient
aj —z
=0.
Z oo

Comme les 1/|z — az|? sont des nombres réels positifs, chaque terme de cette
somme est un vecteur qui pointe dans la direction de z vers l'un des a;. Si z
était en dehors de l’enveloppe convexe, tous ces vecteurs seraient non nuls et
pointeraient dans un méme cone, comme sur 'image ci-dessous. Leur somme ne
pourrait pas étre nulle, ce qui contredirait ’équation. C’est donc que la racine z
de P’ est dans l'enveloppe convexe des racines a; de P.
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Une variante et un exercice De I’équation précédente, on déduit :
m m
z 1
Z 5= T m =AY o
!2—(1 > 1z —ayl — |2 — aj
j= Jj=

o o , .
En posant b; =1 / |z a]] , on remarque qu’on a écrit

m

1
R

J j=1

w
\

ou encore que z est un boarycentre a coefficients positifs des a;. Cela conclut
la démonstration puisqu’un barycentre a coefficients positifs est toujours dans
I’enveloppe convexe.

Si on regarde la preuve de pres, elle indique également si une racine de P’ peut
étre au bord de I'enveloppe convexe des a;. Attention, il y a deux cas a considérer.
Pouvez-vous trouver ’énoncé et le démontrer ?

3. ASTUCE OU RAISON ?

L’astuce de calcul consistant a diviser par P pourra apparaitre, selon la per-
sonne, comme une étrangeté ou une évidence. Certains, quand ils voient une
preuve élémentaire mais basée sur une astuce la jugent insatisfaisante : a quoi
bon démontrer sans expliquer ? Le probleme c’est que la notion méme d’expli-
quer est tres subjective. Untel qui aime les manipulations algébriques la trouvera
trés ludique. Tel autre tentera d’en donner une version géométrique, éliminant les
calculs au maximum. Nous présentons en fin d’article la preuve de Bill Thurston,
maitre en la matiere.

Ci-dessous nous donnons une interprétation géométrique du nombre complexe
—P'(2)/P(z) apparaissant dans la preuve précédente. Nous allons considérer
notre polynéme P sous un angle différent, c’est-a-dire comme une application
ou une transformation du plan complexe. Pour cela imaginons un premier plan
complexe (le plan de départ) comme une feuille de papier calque élastique, puis
un deuxiéme plan complexe (le plan d’arrivée) comme une feuille de papier habi-
tuelle. a chaque nombre complexe z dans le plan de départ, on associe le nombre
complexe P(z) dans le plan d’arrivée. Le premier est appelé antécédent du second
et ce dernier image du premier. On dit aussi que P “envoie” z sur P(z).

On peut donc imaginer que P prend le premier plan et tente de le transformer
pour couvrir le deuxieme plan, de sorte que chaque point z se trouve pile au-dessus
du point P(z)?

Imaginons un motif dans le plan d’arrivée constitué de demi-droites issues de
l'origine, que nous appelons des rayons droits. Imprimons ce motif sur le plan
élastique de départ déformé par P. Puis décalquons. Cela donne une figure sur le
plan de départ, indiquant les antécédents des rayons droits. L’exemple ci-dessous
illustre le cas d’un certain polynéme de degré 4. Nous obtenons des courbes et
quand elles sont parcourues par z alors P(z) se déplace le long d’un rayon droit.

2. 11 se trouve que pour recouvrir le plan d’arrivée comme ce que fait le polynéme P on doit
aussi faire appel aux ciseaux et colles, comme pour recouvrir les coins d’un livre.
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Nous les appelons courbes radiales. Notons qu’un nombre fini d’entre elles se
brisent, précisément aux racines de P’. Elles sont figurées en bleu sur le dessin.
Les autres plongent vers I'une des 4 racines.

Lemme 3.1 (de la courbe radiale). Le vecteur —P'(z)/P(z), basé en z, est tan-
gent a la courbe radiale passant par z, et orienté dans le sens ot P(z) se rapproche
de 0.

Démonstration. Un petit déplacement dz de z induit un déplacement de P(z)
d’environ P’(z) - dz. Le vecteur —P(z) est tangent au rayon droit passant par
P(z) et pointe vers 0. Si z se déplace sur une courbe radiale de maniere a ce
que P(z) se rapproche de 0, alors P’(z) - dz pointe dans la méme direction que
—P(z). Donc dz pointe dans la méme direction que —P(z)/P’(z), donc dans la

méme direction que —P’(z)/P(z) en se rappelant que pour tout nombre complexe
w non nul, les vecteurs 1/w et w pointent dans la méme direction. O

Variante. Si vous connaissez le logarithme complexe, vous aurez reconnu que
P’/ P est la dérivée de log(P). Les courbes radiales pour P correspondent aux
horizontales pour log(P). Donc si z se déplace d’une petite quantité dz sur une
courbe radiale de maniére a ce que P(z) se rapproche de 0, la quantité dz -
P'(z)/P(z) devrait étre un nombre réel négatif, sous la forme —r par exemple.
Du coup, le déplacement dz est sous la forme —P(z)/P’(z). Ce dernier pointe
dans la méme direction que —P(z)/P’(z), qui est la méme que —P’(z)/P(z). O

Gaufl-Lucas et les courbes radiales.

On peut choisir un sens de parcours des demi-droites issues de 0 : celui se
dirigeant vers 0. Cela induit un sens de parcours des courbes radiales : celui pour
lequel P(z) se dirige vers 0. Considérons maintenant une courbe radiale, un point
z dessus et la droite tangente en z a la courbe. On appellera demi-tangente la
moitié de cette droite, démarrant en z et dirigeant dans le sens de parcours de la
courbe.

La preuve du théoreme de Gaufl-Lucas donne alors un résultat intéressant :
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Théoréme 3.2 (GauB-Lucas, version radiale). Soit P un polynéme complexe
non-constant. Alors les demi-tangentes aux courbes radiales rencontrent toutes
l’enveloppe convexe des racines de P.

Vous remarquerez dans cet énoncé une petite manie des mathématiciens. En
effet si z est dans I'enveloppe convexe, il est évident que la tangente en z passe
dans D'enveloppe, puisqu’elle passe par z! L’énoncé est donc complétement in-
intéressant dans ce cas, et on aurait donc pu supposer des le départ z en dehors. ..
Mais on a trouvé plus élégant de faire ’économie de cette hypothese.

4. UN DEMI-PLAN SUFFIT POUR TOUT RECOUVRIR

Nous avons jusqu’ici réussi a visualiser a la fois I’énoncé et la preuve du
théoreme de Gauss-Lucas. Que peut-on dire de plus?

En fait nous ne sommes qu’a la moitié de notre histoire, ce théoréeme nous
cache encore des facettes bien fascinantes. Par exemple il peut s’énoncer sans
méme mentionner les racines du polyndéme en question. Est-ce que vous nous
croyez ?

Notons encore P un polynéme complexe non-constant. Le théoreme fondamen-
tal de I'algebre dit que P admet au moins une racine, ou encore, de notre point
de vue géométrique, le point 0 admet au moins un antécédent par P.

Soit v un nombre complexe quelconque. Vous remarquerez qu’une solution de
Péquation P(z) = v est aussi une solution de 1’équation P(z) — v = 0, ou encore
une racine du nouveau polynoéme P(z) — v. D’autre part P(z) = v s’interprete
géométriquement comme z étant un antécédent de v par P.

En appliquant le théoreme fondamental de I'algebre & P(z) — v pour tout v
parcourant le plan complexe, on peut conclure que tout point v admet au moins
un antécédent par P. Autrement dit, P arrive & recouvre tout le plan d’arrivée
avec la feuille calque du plan de départ. On dit alors que P est surjectif sur le
plan du départ.

L’air de rien, le théoreme de Gauss-Lucas indique une économie sur la région
suffisante & recouvrir le plan d’arrivée tout entier :

Théoréme 4.1 (GauB-Lucas, version surjective). Un polynéme non-constant P
est surjectif sur tout demi-plan (frontiére comprise) qui rencontre des racines du
polynome dérivé P’.

Démonstration. On procede par absurde a ’aide de la version classique. Soit F
un demi-plan rencontrant au moins une racine (disons c) de la dérivée P’ tel que
son image par P ne couvre pas tout le plan d’arrivée. Il manque par exemple un
point v. Les racines du polynéme Q(z) = P(z) — v sont donc toutes en dehors de
F. Leur enveloppe convexe est donc disjointe de F'. Or d’apres la version classique
du théoreme de Gauss-Lucas (appliquée cette fois-ci au polynoéme @), le point ¢
qui est aussi une racine de la dérivée Q)’, se trouverait dans cette enveloppe, donc
pas dans F'. On obtient une contradiction. O

On peut aussi redémontrer la version classique a partir de la version surjective
(on dit alors que ces deux énoncés sont équivalents). Le détail est laissé au lecteur
comme un petit exercice.
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Vous avez bien vu qu’il n’est plus question de parler des racines de P!

5. UNE REGION ENCORE PLUS ECONOMIQUE POUR COUVRIR LE PLAN 7

Ainsi, si I'on veut couvrir le plan d’arrivée tout entier avec un demi-plan conte-
nant le moins de points possible, il faut prendre un demi-plan qui “touche” tout
juste I’enveloppe convexe des racines du polynome dérivé P’.

Pour étre encore plus économe, il serait intéressant de trouver une région D en
un seul morceau (ou bien une région connexe comme disent les mathématiciens)
sur laquelle I'image de P couvre chaque point du plan d’arrivée une et une seule
fois. On dit alors que P est bijectif sur D. Pour étre plus précis, on voudrait que
D comprenne la région, appelée intérieur, délimitée par des morceaux de courbes
qui forment ce qu’on appelle sa frontiére, ainsi qu'une partie de ces courbes (mais
pas tout!).

Le résultat suivant, qui est plus puissant que le théoreme de Gauf-Lucas clas-
sique, nous a été communiqué par Bill Thurston en janvier 2011. Nous ne 'avions
jamais vu ailleurs :

Théoréme 5.1 (GauB-Lucas-Thurston, version bijective). Soit P un polynéme
non-constant. Soit F' un demi-plan posé sur l’enveloppe convexe des racines du
polynéome dérivé P’ et extérieur a ces racines. Il y a sur la droite délimitant I
une ou plusieurs racines de P'. Soit ¢ l'une d’entre elles. Alors dans F' on peut
trouver une région connexe DF sur laquelle P est bijectif, et dont l'intérieur est
envoyé par P sur un plan privé d’une demi-droite issue de P(c).

Il n’est pas si difficile de trouver des régions bijectives, et on a un large choix
sur la forme de 'image par P de leur intérieur. L’intérét du théoreme est qu’il
situe certaines de ces régions, d’image un plan moins une demi-droite, dans les
demi-plans F appuyés sur I’enveloppe des racines de P’. Sa preuve est également
intéressante, en ce qu’elle consiste a appliquer le théoreme de Gauf-Lucas non
pas & P, mais & P’, et la version radiale qui plus est.

L’image suivante essaye d’illustrer le théoreme. Le polynoéme a degré 4. Les trois
racines de P’ sont les sommets du triangle orange. Nous ne savons pas ot sont les
racines de P et, pour une fois, on s’en moque! Le demi-plan F' est délimité par
la droite noire et s’appuie sur un des sommets, sans toutefois contenir le triangle.
La région D est la zone contenue dans F' et peinte avec les damiers noirs et verts.
Sa frontiere est la courbe rouge. Le polynéme P envoie la région D sur I'image de
droite, l'intérieur est envoyé sur le plan privé de la demi-droite rouge. On a pris
soin, pour z dans D ou sa frontiére, de peindre z avec la méme couleur que P(z).
On peut s’imaginer que P prend la région D, la déforme pour recoudre la courbe
rouge sur elle-méme a partir du point de contact avec le triangle, de maniere a
obtenir le plan d’arrivée.
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6. ESQUISSE DE PREUVE DU THEOREME 5.1

Voici une autre illustration de la méme situation. L’enveloppe convexe des
racines du polynome dérivé P’ est représentée par un triangle blanc. On considere
le méme demi-plan F' en bas a droite de la droite noire.

%\\U

Pour mettre en lumiere la preuve, on a illustré cette fois-ci des courbes radiales
de P(z) — v pour un certain choix de v. Ces courbes ne sont rien d’autre que les
antécédents par P des rayons droits du plan d’arrivée et coulant vers v. Dans F on
peut remarquer la présence d’un puits de ces courbes, c’est-a-dire un antécédent
de v. Appelons-le p.

La valeur v a été choisie de sorte qu'une des courbes radiales de p 'bute’ sur
le sommet blanc ¢ perpendiculairement a la droite noire, puis bifurque sur deux
courbes tangentes a cette droite. On trouve de tels v sur une certaine demi-droite
issue de P(c).
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On peut constater sur 'image, et c’est la qu’il faut travailler pour le montrer,
que les deux courbes brisées restent dans F sans traverser la barriere noire. Une
fois ce fait établi, toutes les autres courbes radiales de p seront bloquées par ces
deux-la et resteront dans F'. On pourra alors prendre D comme la région dans F
délimitée par ces deux courbes (en ne considérant qu’une des deux courbes comme
faisant partie de notre région). Le fait que ces courbes radiales sont completes,
c’est-a-dire que P envoie bien chacune sur la demi-droite issue de v toute entiere,
vient essentiellement du fait qu’elles ne rencontrent aucune racine de P’ (pour les
plus curieux, signalons qu’on applique le théoreme d’inversion locale et le fait que
P(z) est grand quand z est grand). Il apparaitra alors dans D une copie déformée
mais conforme du plan d’arrivée muni des rayons radiaux coulant vers v.

Pour le plaisir, voici une mise en relief de notre région D. Elle n’est pas
nécessaire & la compréhension de la suite®.

Esquissons a présent une preuve que ces deux courbes brisées restent dans F',
en les suivant a rebours (vers I'infini). On va étudier dans quelle direction peuvent
s’incurver les courbes radiales. Cependant, on va appliquer la version radiale du
théoréme de Gauf-Lucas non pas & P, mais a P’.

Lemme 6.1. Appelons n le vecteur normal en un point z a une courbe radiale,
et pointant dans le sens vers ot s’incurve la courbe. Alors n fait un angle d’au

moins 7/2 avec —P"(2)/P'(2).

Avant de démontrer ce lemme, voyons sur la figure suivante comment on peut
I'utiliser pour en déduire le théoreme. Le polygone jaune est ’enveloppe convexe
des racines de P’. On a dessiné des bouts de courbes et les normales correspon-
dantes. Certains sont compatibles avec le lemme, d’autres pas. On a coché les
premiers et biffé les seconds. La regle est la suivante : le vecteur n doit faire plus

de m/2 avec le vecteur —P"(z)/P’(z), qui lui-méme doit appartenir au cone issu

3. Les “piques” hors cette région sont artificiels. Pour les experts, signalons que hauteur des
reliefs a été choisie suivant une < représentation conforme >de cette région vers le disque unité
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de z et contenant les racines. Pour 5 points z différents, on a représenté en rose
les directions des vecteurs n autorisés par le lemme.

V.

N\

Parcourons maintenant une courbe radiale. Si on est arrivé en un point z ou
la courbe s’éloigne de la droite noire, alors en continuant de la parcourir dans le
meéme sens, elle ne pourra plus jamais s’en rapprocher : sinon, elle devrait étre
a un moment parallele a la droite noire, mais s’incurver vers elle. Le vecteur n
serait perpendiculaire & la droite noire et orienté dans sa direction. Il ferait alors
moins de 7/2 avec tous les vecteurs du cone, car ces derniers pointent tous vers
I’enveloppe : contradiction. La preuve que les deux courbes radiales issues de ¢
commencent des le début & s’incurver vers F' est quasiment la méme. Ainsi les
deux courbes en lesquelles se brise le rayon issu de v sont intégralement incluses
dans F'. Nous avons vu plus haut que cela suffit & prouver le théoréme.

Notez qu’on n’a pas démontré que D est convexe, d’ailleurs ce n’est pas toujours
le cas.

Il nous reste a démontrer le lemme. Il y a une version de la preuve utilisant le
calcul différentiel, mais nous préférons présenter la vision géométrique qu’en avait
Thurston. Attention, celle-ci requiert des notions de géométrie Riemannienne
(pas étudiées a I'université avant le M1 ou M2 dans les cursus de mathématiques
fondamentales).

Démonstration du Lemme 6.1. L’idée est de considérer le plan de départ avec
une autre métrique, en 'occurrence celle ’calquée’ par P de la métrique usuelle
du plan d’arrivée. Ainsi un vecteur de longueur unité habituelle issu d’un point
z a pour longueur |P’(z)| & présent. Du coup les courbes radiales de P(z) — v
deviennent des géodésiques pour cette métrique. En général une géodésique d’un
point A & un point B n’est pas une ligne droite quand la métrique est variable,
méme quand A et B sont proches : elle a tendance a faire un détour par les
endroits ou le coefficient de la métrique est petit, car c’est plus économique,
c’est-a-dire dans notre cas vers la partie ot le module de P’ devient plus petit.
Thurston disait que c’est comme a la plage : pour aller plus vite d’un endroit a
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un autre, il vaut mieux faire un détour vers le bord de la mer et marcher le plus
longtemps possible sur du sable mouillé et dur. Ce détour fait que notre parcours
s’incurve dans le sens opposé a la mer. Donc le vecteur normal n de notre lemme
doit orienter dans une direction ol le module de P’ devient plus grand.

Et la version radiale du théoreme de Gauss-Lucas, appliquée cette fois-ci au
polynéme dérivé P’, montre que le module de P’ diminue dans n’importe quelle
direction faisant moins de 7/2 avec —P"(z)/P’(z). Ainsi notre vecteur n doit
éviter toutes ces directions. O

7. UNE PREUVE SANS CALCUL ? ET APRES?

Pour terminer notre tour de visite du théoreme de Gauss-Lucas, nous vous
indiquons une autre preuve de la version classique de ce théoreme. Elle nous
a été proposée par Bill Thurston. Par rapport a la preuve présentée en début
d’article, elle élimine les deux lignes de calcul de P’(z)/P(z). Elle est donc encore
plus géométrique ! Par contre, elle n’offre pas le raffinement de bijectivité. Comme
certaines notions nécessitent une connaissance du cours de Calcul Différentiel en
L3, nous la présenterons sous forme d’une série d’exercices sans fournir tous les
détails. Nous ne présenterons pas les illustrations non plus.

Soit z un point hors I'’enveloppe convexe des racines d’'un polynéme P.

— Pour chaque racine a; de P, on trace la droite passant par z perpendicu-
laire au segment [z, a;]. La fonction distance z +— |z — a;| a une dérivée
directionnelle strictement positive dans n’importe quelle direction pointant
vers le coté opposé a a; de cette droite.

— Comme z admet un cone visuel vers les racines a;, il existe une direction
dans laquelle la dérivée directionnelle de z — |z—a;| est strictement positive
pour toutes les racines a;.

— Ceci implique que dans cette direction, la dérivée directionnelle de z +—
|P(z)| est aussi strictement positive, car |P(z)| est le produit des |z — a;|.

— P’(z) est donc non nul.

Ceci démontre le théoreme de Gauss-Lucas.

Et apres ?

Nous sommes enfin arrivés a la fin de notre histoire. Mais la fin d’une histoire
est peut-étre le début d’une autre, n’est-ce pas?

Derriere ce théoreme ultra classique et innocent, il y a encore de multiples
questions dont on ne connait pas de réponses. Par exemple, malgré beaucoup
de résultats partiels, on ne sait toujours pas bien localiser les racines de P’ par
rapport a celles de P. Apres tout 'enveloppe convexe des racines pourrait étre
un trop grand terrain pour cacher nos trésors...

Un autre probleme intéressant est d’étudier l'intersection K, sur tout v pos-
sible, de I’enveloppe convexe des racines de P(z) — v. Elle doit contenir toutes
les racines de P’, et par conséquent leur enveloppe convexe C. On aurait pu
s’attendre a ce que K se réduise a C'. Mais des expériences numériques suivies
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des arguments rigoureux montrent que ce n’est souvent pas le cas! Pour plus de
détail, le lecteur est invité & consulter une discussion sur Mathoverflow .

Ce théoreme est aussi lié & une conjecture d’Eduardo Casas-Alvero, formulée
en 2001 :

Conjecture 1 (Casas-Alvero). Soit P un polynéme de degré au moins 1 ayant
une racine commune avec chacune de ses dérivées successives. Alors, toutes les
racines de P se confondent en un seul point.

4. Attention aux notations, le polynéme P(z) la-bas pourrait désigner notre P’(z) ici



