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Travail demandé :

Il vous est demandé d’étudier puis de présenter le texte joint à tra-
vers un exposé de synthèse d’une durée comprise entre 15 et 20 minutes.

Si l’étude de la totalité du dossier et la préparation d’un exposé
cohérent dans la durée impartie ne vous parâıt pas possible, vous pou-
vez décider de vous limiter à une partie du dossier.

Remarques générales :

1. Les textes proposés, quelle que soit leur origine, peuvent présenter
des défauts (coquilles typographiques, négligences ou sous-entendus de
l’auteur, voire erreurs. . .) qui, sauf exception, n’ont pas été corrigés.

2. Les textes proposés peuvent contenir des exercices qu’il n’est pas
demandé de résoudre. Néanmoins, vous pouvez vous aider des énoncés
de ces exercices pour enrichir votre exposé.

3. Vous pouvez annoter les documents qui vous sont fournis. Vos an-
notations ne seront pas regardées par l’examinateur.

Remarque particulière :

Dans le document, il est quesiton de l’enveloppe convexe d’un sous-
ensemble de R2 : l’enveloppe convexe de E ⇢ R2 est le plus petit
sous-ensemble convexe (au sens de l’inclusion) de Rn qui contienne E.



SI NOUS FAISIONS DANSER LES RACINES ?

Résumé. Cet article tente de rendre un modeste hommage au géomètre Bill
Thurston, disparu le 21 août 2012. Nous allons présenter quelques-unes de ses
observations (visuelles bien entendu !) sur un théorème de Gauss (en 1836)
et Lucas (en 1874). L’article s’adresse aux lecteurs ayant déjè une certaine
connaissance sur les notions de fonctions, dérivées, polynômes et nombres
complexes.

1. Introduction

La dérivée d’un polynôme est encore un polynôme. Par exemple pour P (x) =

x4 � 7x2 + 3, on trouve P 0
(x) = 4x3 � 14x.

Comment cela, mon polynôme a des racines ? Les racines d’un polynôme P , ce

sont les nombres complexes z solutions de l’équation P (z) = 0. Voici quelques

exemples : le polynôme z2 � 1 a deux racines : 1 et �1. Le polynôme z2 + 1 a

deux racines : i et �i. Le polynôme z3 n’a qu’une racine : 0.

Factorisation totale. Il y a un théorème très utile, appelé LE théorème fonda-

mental de l’algèbre (et parfois théorème de d’Alembert-Gauss), qui dit qu’un

polynôme, qu’il soit à coe�cients réels ou complexes, a toujours une racine com-

plexe. Une conséquence
1
est qu’un polynôme de degré m se factorise ainsi :

P (z) = A(z � a1) · · · (z � am)

où A et a1, . . . , am sont des nombres complexes. Il possède donc m racines, cer-

taines pouvant se répéter comme dans P (z) = (z � 1)(z � 1)(z + 2). Une racine

qui se répète est appelée racine multiple.

Si P est de degré m, alors P 0
est de degré m� 1, donc il possède m� 1 racines,

qui peuvent très bien se répéter.

Y a-t-il une relation entre les racines complexes de P et celles de P 0
? Si w est

une racine multiple de P , alors c’est une racine de P 0
. Si le degré de P est égal à

deux, alors la racine de P 0
est le milieu du segment reliant les deux racines de P

(et si P a une racine double, c’est aussi la racine de P 0
). Si P est de degré 3, il

y a également une caractérisation géométrique des racines de P 0
, nettement plus

élaborée, due à Marden. Dans le cas général, il n’y a pas de réponse simple, mais

on a le joli théorème suivant :

Théorème 1.1 (Gauß-Lucas, version classique). Pour tout polynôme P (de degré
un ou plus), l’enveloppe convexe des racines de P contient les racines de P 0.

1. Ce n’est pas une conséquence immédiate : il faut utiliser un autre théorème, qui dit que
si a est une racine de P , alors P (z) = (z � a)Q(z) où Q est un polynôme.

1
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D’après Wikipedia, ce résultat est utilisé de manière implicite en 1836 par Carl

Friedrich Gauß et prouvé en 1874 par Félix Lucas.

Qu’est-ce qu’une enveloppe convexe ? On peut imaginer un terrain avec un cer-

tain nombre d’arbres, qu’on veut entourer par un ruban le plus court possible. Le

terrain entouré est l’enveloppe convexe de ces arbres. Certains arbres touchent le

bord. D’autres (peut-être) sont à l’intérieur du terrain. Ce terrain est en particu-

lier convexe, au sens où il contient le chemin droit reliant n’importe quel couple

de ses points. L’enveloppe convexe est un polygône et inclut sa frontière et ses

sommets.

Il existe au moins deux autres définitions équivalentes de l’enveloppe convexe

d’une collection finie de points : d’une part c’est l’intersection de tous les demi-

plans contenant tous les points ; d’autre part c’est l’ensemble des barycentres des

points à coe�cients positifs ou nuls.

Nous vous avons mijoté un exemple particulier : P (z) = (z2 + 2)(z � 4)
2
. Il se

factorise ainsi : P (z) = (z + i
p
2)(z � i

p
2)(z � 4)(z � 4) et se développe ainsi :

P (z) = z4 � 8z3 + 18z2 � 16z + 32. Sa dérivée est P 0
(z) = 4z3 � 24z2 + 36z � 16

se factorise ainsi : P 0
(z) = 4(z�1)(z�1)(z�4). L’enveloppe convexe des racines

de P est le triangle de sommets i
p
2, �i

p
2 et 4 et les racines de P 0

sont 1, 1 et

4, qui sont bien dans l’enveloppe convexe, la dernière étant pile sur un sommet.

Dans l’image ci-dessous, nous avons figuré les racines de P comme des arbres

et fait appel à des moutons pour celles de P 0
. Le bord de l’enveloppe convexe

correspond à la clôture orange (l’épaisseur des arbres nous a obligés à la décaler

légèrement).

2. Une preuve classique du théorème de Gauß-Lucas

Si on dérive P (z) = A(z�a1) · · · (z�am), on trouve que P 0
est la somme pour

j allant de 1 à m des produits A(z � a1) · · · (z � am) dont on a retiré le facteur
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(z � aj) :

P 0
(z) =

mX

j=1

P (z)

z � aj
.

Autrement dit

P 0
(z)

P (z)
=

mX

j=1

1

z � aj
.

1̀ partir de là il y a plusieurs manières de procéder. Celle que nous présentons a

une saveur géométrique et un rapport avec la suite.

Rappelons la méthode pour calculer l’inverse d’un nombre complexe z : si

z = x+ iy, alors son module |z| est
p
x2 + y2 et son conjugué z̄ est x� iy. On a

la relation zz̄ = |z|2, ou encore,
1

z =
z̄

|z|2 si z est non nul.

L’équation citée plus haut se traduit alors ainsi :

P 0
(z)

P (z)
=

mX

j=1

z � aj
|z � aj |2

.

Pour des raisons pratiques, on passe au conjugué dans l’équation plus haut

puis on multiplie par -1. On obtient :

�P 0(z)

P (z)
=

mX

j=1

aj � z

|z � aj |2
.

Si z est une racine de P 0
et pas de P alors P 0

(z)/P (z) = 0 donc on obtient

mX

j=1

aj � z

|z � aj |2
= 0.

Comme les 1/|z � ak|2 sont des nombres réels positifs, chaque terme de cette

somme est un vecteur qui pointe dans la direction de z vers l’un des aj . Si z
était en dehors de l’enveloppe convexe, tous ces vecteurs seraient non nuls et

pointeraient dans un même cône, comme sur l’image ci-dessous. Leur somme ne

pourrait pas être nulle, ce qui contredirait l’équation. C’est donc que la racine z
de P 0

est dans l’enveloppe convexe des racines aj de P .
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Une variante et un exercice De l’équation précédente, on déduit :

mX

j=1

aj
|z � aj |2

=

mX

j=1

z

|z � aj |2
= z

mX

j=1

1

|z � aj |2
.

En posant bj = 1/|z � aj |2, on remarque qu’on a écrit

z =
1P
j bj

mX

j=1

bjaj

ou encore que z est un boarycentre à coe�cients positifs des aj . Cela conclut

la démonstration puisqu’un barycentre à coe�cients positifs est toujours dans

l’enveloppe convexe.

Si on regarde la preuve de près, elle indique également si une racine de P 0
peut

être au bord de l’enveloppe convexe des aj . Attention, il y a deux cas à considérer.

Pouvez-vous trouver l’énoncé et le démontrer ?

3. Astuce ou raison ?

L’astuce de calcul consistant à diviser par P pourra apparâıtre, selon la per-

sonne, comme une étrangeté ou une évidence. Certains, quand ils voient une

preuve élémentaire mais basée sur une astuce la jugent insatisfaisante : à quoi

bon démontrer sans expliquer ? Le problème c’est que la notion même d’expli-

quer est très subjective. Untel qui aime les manipulations algébriques la trouvera

très ludique. Tel autre tentera d’en donner une version géométrique, éliminant les

calculs au maximum. Nous présentons en fin d’article la preuve de Bill Thurston,

mâıtre en la matière.

Ci-dessous nous donnons une interprétation géométrique du nombre complexe

�P 0(z)/P (z) apparaissant dans la preuve précédente. Nous allons considérer

notre polynôme P sous un angle di↵érent, c’est-à-dire comme une application

ou une transformation du plan complexe. Pour cela imaginons un premier plan

complexe (le plan de départ) comme une feuille de papier calque élastique, puis

un deuxième plan complexe (le plan d’arrivée) comme une feuille de papier habi-

tuelle. à chaque nombre complexe z dans le plan de départ, on associe le nombre

complexe P (z) dans le plan d’arrivée. Le premier est appelé antécédent du second

et ce dernier image du premier. On dit aussi que P “envoie” z sur P (z).
On peut donc imaginer que P prend le premier plan et tente de le transformer

pour couvrir le deuxième plan, de sorte que chaque point z se trouve pile au-dessus
du point P (z) 2.

Imaginons un motif dans le plan d’arrivée constitué de demi-droites issues de

l’origine, que nous appelons des rayons droits. Imprimons ce motif sur le plan

élastique de départ déformé par P . Puis décalquons. Cela donne une figure sur le

plan de départ, indiquant les antécédents des rayons droits. L’exemple ci-dessous

illustre le cas d’un certain polynôme de degré 4. Nous obtenons des courbes et

quand elles sont parcourues par z alors P (z) se déplace le long d’un rayon droit.

2. Il se trouve que pour recouvrir le plan d’arrivée comme ce que fait le polynôme P on doit
aussi faire appel aux ciseaux et colles, comme pour recouvrir les coins d’un livre.
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Nous les appelons courbes radiales. Notons qu’un nombre fini d’entre elles se

brisent, précisément aux racines de P 0
. Elles sont figurées en bleu sur le dessin.

Les autres plongent vers l’une des 4 racines.

Lemme 3.1 (de la courbe radiale). Le vecteur �P 0(z)/P (z), basé en z, est tan-
gent à la courbe radiale passant par z, et orienté dans le sens où P (z) se rapproche
de 0.

Démonstration. Un petit déplacement dz de z induit un déplacement de P (z)
d’environ P 0

(z) · dz. Le vecteur �P (z) est tangent au rayon droit passant par

P (z) et pointe vers 0. Si z se déplace sur une courbe radiale de manière à ce

que P (z) se rapproche de 0, alors P 0
(z) · dz pointe dans la même direction que

�P (z). Donc dz pointe dans la même direction que �P (z)/P 0
(z), donc dans la

même direction que �P 0(z)/P (z) en se rappelant que pour tout nombre complexe

w non nul, les vecteurs 1/w̄ et w pointent dans la même direction. ⇤
Variante. Si vous connaissez le logarithme complexe, vous aurez reconnu que

P 0/P est la dérivée de log(P ). Les courbes radiales pour P correspondent aux

horizontales pour log(P ). Donc si z se déplace d’une petite quantité dz sur une

courbe radiale de manière à ce que P (z) se rapproche de 0, la quantité dz ·
P 0

(z)/P (z) devrait être un nombre réel négatif, sous la forme �r par exemple.

Du coup, le déplacement dz est sous la forme �P (z)/P 0
(z). Ce dernier pointe

dans la même direction que �P (z)/P 0
(z), qui est la même que �P 0(z)/P (z). ⇤

Gauß-Lucas et les courbes radiales.
On peut choisir un sens de parcours des demi-droites issues de 0 : celui se

dirigeant vers 0. Cela induit un sens de parcours des courbes radiales : celui pour

lequel P (z) se dirige vers 0. Considérons maintenant une courbe radiale, un point

z dessus et la droite tangente en z à la courbe. On appellera demi-tangente la

moitié de cette droite, démarrant en z et dirigeant dans le sens de parcours de la

courbe.

La preuve du théorème de Gauß-Lucas donne alors un résultat intéressant :
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Théorème 3.2 (Gauß-Lucas, version radiale). Soit P un polynôme complexe
non-constant. Alors les demi-tangentes aux courbes radiales rencontrent toutes
l’enveloppe convexe des racines de P.

Vous remarquerez dans cet énoncé une petite manie des mathématiciens. En

e↵et si z est dans l’enveloppe convexe, il est évident que la tangente en z passe

dans l’enveloppe, puisqu’elle passe par z ! L’énoncé est donc complètement in-

intéressant dans ce cas, et on aurait donc pu supposer dès le départ z en dehors. . .
Mais on a trouvé plus élégant de faire l’économie de cette hypothèse.

4. Un demi-plan suffit pour tout recouvrir

Nous avons jusqu’ici réussi à visualiser à la fois l’énoncé et la preuve du

théorème de Gauss-Lucas. Que peut-on dire de plus ?

En fait nous ne sommes qu’à la moitié de notre histoire, ce théorème nous

cache encore des facettes bien fascinantes. Par exemple il peut s’énoncer sans

même mentionner les racines du polynôme en question. Est-ce que vous nous

croyez ?

Notons encore P un polynôme complexe non-constant. Le théorème fondamen-

tal de l’algèbre dit que P admet au moins une racine, ou encore, de notre point

de vue géométrique, le point 0 admet au moins un antécédent par P .

Soit v un nombre complexe quelconque. Vous remarquerez qu’une solution de

l’équation P (z) = v est aussi une solution de l’équation P (z)� v = 0, ou encore

une racine du nouveau polynôme P (z) � v. D’autre part P (z) = v s’interprète

géométriquement comme z étant un antécédent de v par P .

En appliquant le théorème fondamental de l’algèbre à P (z) � v pour tout v
parcourant le plan complexe, on peut conclure que tout point v admet au moins

un antécédent par P . Autrement dit, P arrive à recouvre tout le plan d’arrivée

avec la feuille calque du plan de départ. On dit alors que P est surjectif sur le

plan du départ.

L’air de rien, le théorème de Gauss-Lucas indique une économie sur la région

su�sante à recouvrir le plan d’arrivée tout entier :

Théorème 4.1 (Gauß-Lucas, version surjective). Un polynôme non-constant P
est surjectif sur tout demi-plan (frontière comprise) qui rencontre des racines du
polynôme dérivé P 0.

Démonstration. On procède par absurde à l’aide de la version classique. Soit F
un demi-plan rencontrant au moins une racine (disons c) de la dérivée P 0

tel que

son image par P ne couvre pas tout le plan d’arrivée. Il manque par exemple un

point v. Les racines du polynôme Q(z) = P (z)� v sont donc toutes en dehors de

F . Leur enveloppe convexe est donc disjointe de F . Or d’après la version classique

du théorème de Gauss-Lucas (appliquée cette fois-ci au polynôme Q), le point c
qui est aussi une racine de la dérivée Q0

, se trouverait dans cette enveloppe, donc

pas dans F . On obtient une contradiction. ⇤
On peut aussi redémontrer la version classique à partir de la version surjective

(on dit alors que ces deux énoncés sont équivalents). Le détail est laissé au lecteur

comme un petit exercice.
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Vous avez bien vu qu’il n’est plus question de parler des racines de P !

5. Une région encore plus économique pour couvrir le plan ?

Ainsi, si l’on veut couvrir le plan d’arrivée tout entier avec un demi-plan conte-

nant le moins de points possible, il faut prendre un demi-plan qui “touche” tout

juste l’enveloppe convexe des racines du polynôme dérivé P 0
.

Pour être encore plus économe, il serait intéressant de trouver une région D en

un seul morceau (ou bien une région connexe comme disent les mathématiciens)

sur laquelle l’image de P couvre chaque point du plan d’arrivée une et une seule

fois. On dit alors que P est bijectif sur D. Pour être plus précis, on voudrait que

D comprenne la région, appelée intérieur, délimitée par des morceaux de courbes

qui forment ce qu’on appelle sa frontière, ainsi qu’une partie de ces courbes (mais

pas tout !).

Le résultat suivant, qui est plus puissant que le théorème de Gauß-Lucas clas-

sique, nous a été communiqué par Bill Thurston en janvier 2011. Nous ne l’avions

jamais vu ailleurs :

Théorème 5.1 (Gauß-Lucas-Thurston, version bijective). Soit P un polynôme
non-constant. Soit F un demi-plan posé sur l’enveloppe convexe des racines du
polynôme dérivé P 0 et extérieur à ces racines. Il y a sur la droite délimitant F
une ou plusieurs racines de P 0. Soit c l’une d’entre elles. Alors dans F on peut
trouver une région connexe DF sur laquelle P est bijectif, et dont l’intérieur est
envoyé par P sur un plan privé d’une demi-droite issue de P (c).

Il n’est pas si di�cile de trouver des régions bijectives, et on a un large choix

sur la forme de l’image par P de leur intérieur. L’intérêt du théorème est qu’il

situe certaines de ces régions, d’image un plan moins une demi-droite, dans les

demi-plans F appuyés sur l’enveloppe des racines de P 0
. Sa preuve est également

intéressante, en ce qu’elle consiste à appliquer le théorème de Gauß-Lucas non

pas à P , mais à P 0
, et la version radiale qui plus est.

L’image suivante essaye d’illustrer le théorème. Le polynôme a degré 4. Les trois

racines de P 0
sont les sommets du triangle orange. Nous ne savons pas où sont les

racines de P et, pour une fois, on s’en moque ! Le demi-plan F est délimité par

la droite noire et s’appuie sur un des sommets, sans toutefois contenir le triangle.

La région D est la zone contenue dans F et peinte avec les damiers noirs et verts.

Sa frontière est la courbe rouge. Le polynôme P envoie la région D sur l’image de

droite, l’intérieur est envoyé sur le plan privé de la demi-droite rouge. On a pris

soin, pour z dans D ou sa frontière, de peindre z avec la même couleur que P (z).
On peut s’imaginer que P prend la région D, la déforme pour recoudre la courbe

rouge sur elle-même à partir du point de contact avec le triangle, de manière à

obtenir le plan d’arrivée.
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6. Esquisse de preuve du Théorème 5.1

Voici une autre illustration de la même situation. L’enveloppe convexe des

racines du polynôme dérivé P 0
est représentée par un triangle blanc. On considère

le même demi-plan F en bas à droite de la droite noire.

Pour mettre en lumière la preuve, on a illustré cette fois-ci des courbes radiales

de P (z)� v pour un certain choix de v. Ces courbes ne sont rien d’autre que les

antécédents par P des rayons droits du plan d’arrivée et coulant vers v. Dans F on

peut remarquer la présence d’un puits de ces courbes, c’est-à-dire un antécédent

de v. Appelons-le p.
La valeur v a été choisie de sorte qu’une des courbes radiales de p ’bute’ sur

le sommet blanc c perpendiculairement à la droite noire, puis bifurque sur deux

courbes tangentes à cette droite. On trouve de tels v sur une certaine demi-droite

issue de P (c).
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On peut constater sur l’image, et c’est là qu’il faut travailler pour le montrer,

que les deux courbes brisées restent dans F sans traverser la barrière noire. Une

fois ce fait établi, toutes les autres courbes radiales de p seront bloquées par ces

deux-là et resteront dans F . On pourra alors prendre D comme la région dans F

délimitée par ces deux courbes (en ne considérant qu’une des deux courbes comme

faisant partie de notre région). Le fait que ces courbes radiales sont complètes,

c’est-à-dire que P envoie bien chacune sur la demi-droite issue de v toute entière,

vient essentiellement du fait qu’elles ne rencontrent aucune racine de P 0
(pour les

plus curieux, signalons qu’on applique le théorème d’inversion locale et le fait que

P (z) est grand quand z est grand). Il apparâıtra alors dans D une copie déformée

mais conforme du plan d’arrivée muni des rayons radiaux coulant vers v.
Pour le plaisir, voici une mise en relief de notre région D. Elle n’est pas

nécessaire à la compréhension de la suite
3
.

Esquissons à présent une preuve que ces deux courbes brisées restent dans F ,

en les suivant à rebours (vers l’infini). On va étudier dans quelle direction peuvent

s’incurver les courbes radiales. Cependant, on va appliquer la version radiale du

théorème de Gauß-Lucas non pas à P , mais à P 0
.

Lemme 6.1. Appelons n le vecteur normal en un point z à une courbe radiale,
et pointant dans le sens vers où s’incurve la courbe. Alors n fait un angle d’au
moins ⇡/2 avec �P 00(z)/P 0

(z).

Avant de démontrer ce lemme, voyons sur la figure suivante comment on peut

l’utiliser pour en déduire le théorème. Le polygone jaune est l’enveloppe convexe

des racines de P 0
. On a dessiné des bouts de courbes et les normales correspon-

dantes. Certains sont compatibles avec le lemme, d’autres pas. On a coché les

premiers et bi↵é les seconds. La règle est la suivante : le vecteur n doit faire plus

de ⇡/2 avec le vecteur �P 00(z)/P 0
(z), qui lui-même doit appartenir au cône issu

3. Les “piques” hors cette région sont artificiels. Pour les experts, signalons que hauteur des
reliefs a été choisie suivant une ⌧ représentation conforme �de cette région vers le disque unité
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de z et contenant les racines. Pour 5 points z di↵érents, on a représenté en rose

les directions des vecteurs n autorisés par le lemme.

Parcourons maintenant une courbe radiale. Si on est arrivé en un point z où

la courbe s’éloigne de la droite noire, alors en continuant de la parcourir dans le

même sens, elle ne pourra plus jamais s’en rapprocher : sinon, elle devrait être

à un moment parallèle à la droite noire, mais s’incurver vers elle. Le vecteur n

serait perpendiculaire à la droite noire et orienté dans sa direction. Il ferait alors

moins de ⇡/2 avec tous les vecteurs du cône, car ces derniers pointent tous vers

l’enveloppe : contradiction. La preuve que les deux courbes radiales issues de c
commencent dès le début à s’incurver vers F est quasiment la même. Ainsi les

deux courbes en lesquelles se brise le rayon issu de v sont intégralement incluses

dans F . Nous avons vu plus haut que cela su�t à prouver le théorème.

Notez qu’on n’a pas démontré queD est convexe, d’ailleurs ce n’est pas toujours

le cas.

Il nous reste à démontrer le lemme. Il y a une version de la preuve utilisant le

calcul di↵érentiel, mais nous préférons présenter la vision géométrique qu’en avait

Thurston. Attention, celle-ci requiert des notions de géométrie Riemannienne

(pas étudiées à l’université avant le M1 ou M2 dans les cursus de mathématiques

fondamentales).

Démonstration du Lemme 6.1. L’idée est de considérer le plan de départ avec

une autre métrique, en l’occurrence celle ’calquée’ par P de la métrique usuelle

du plan d’arrivée. Ainsi un vecteur de longueur unité habituelle issu d’un point

z a pour longueur |P 0
(z)| à présent. Du coup les courbes radiales de P (z) � v

deviennent des géodésiques pour cette métrique. En général une géodésique d’un

point A à un point B n’est pas une ligne droite quand la métrique est variable,

même quand A et B sont proches : elle a tendance à faire un détour par les

endroits où le coe�cient de la métrique est petit, car c’est plus économique,

c’est-à-dire dans notre cas vers la partie où le module de P 0
devient plus petit.

Thurston disait que c’est comme à la plage : pour aller plus vite d’un endroit à
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un autre, il vaut mieux faire un détour vers le bord de la mer et marcher le plus

longtemps possible sur du sable mouillé et dur. Ce détour fait que notre parcours

s’incurve dans le sens opposé à la mer. Donc le vecteur normal n de notre lemme

doit orienter dans une direction où le module de P 0
devient plus grand.

Et la version radiale du théorème de Gauss-Lucas, appliquée cette fois-ci au

polynôme dérivé P 0
, montre que le module de P 0

diminue dans n’importe quelle

direction faisant moins de ⇡/2 avec �P 00(z)/P 0
(z). Ainsi notre vecteur n doit

éviter toutes ces directions. ⇤

7. Une preuve sans calcul ? Et après ?

Pour terminer notre tour de visite du théorème de Gauss-Lucas, nous vous

indiquons une autre preuve de la version classique de ce théorème. Elle nous

a été proposée par Bill Thurston. Par rapport à la preuve présentée en début

d’article, elle élimine les deux lignes de calcul de P 0
(z)/P (z). Elle est donc encore

plus géométrique ! Par contre, elle n’o↵re pas le ra�nement de bijectivité. Comme

certaines notions nécessitent une connaissance du cours de Calcul Di↵érentiel en

L3, nous la présenterons sous forme d’une série d’exercices sans fournir tous les

détails. Nous ne présenterons pas les illustrations non plus.

Soit z un point hors l’enveloppe convexe des racines d’un polynôme P .

— Pour chaque racine aj de P , on trace la droite passant par z perpendicu-

laire au segment [z, aj ]. La fonction distance z 7! |z � aj | a une dérivée

directionnelle strictement positive dans n’importe quelle direction pointant

vers le côté opposé à aj de cette droite.

— Comme z admet un cône visuel vers les racines aj , il existe une direction

dans laquelle la dérivée directionnelle de z 7! |z�aj | est strictement positive

pour toutes les racines aj .
— Ceci implique que dans cette direction, la dérivée directionnelle de z 7!

|P (z)| est aussi strictement positive, car |P (z)| est le produit des |z � aj |.
— P 0

(z) est donc non nul.

Ceci démontre le théorème de Gauss-Lucas.

Et après ?

Nous sommes enfin arrivés à la fin de notre histoire. Mais la fin d’une histoire

est peut-être le début d’une autre, n’est-ce pas ?

Derrière ce théorème ultra classique et innocent, il y a encore de multiples

questions dont on ne connait pas de réponses. Par exemple, malgré beaucoup

de résultats partiels, on ne sait toujours pas bien localiser les racines de P 0
par

rapport à celles de P . Après tout l’enveloppe convexe des racines pourrait être

un trop grand terrain pour cacher nos trésors...

Un autre problème intéressant est d’étudier l’intersection K, sur tout v pos-

sible, de l’enveloppe convexe des racines de P (z) � v. Elle doit contenir toutes

les racines de P 0
, et par conséquent leur enveloppe convexe C. On aurait pu

s’attendre à ce que K se réduise à C. Mais des expériences numériques suivies
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des arguments rigoureux montrent que ce n’est souvent pas le cas ! Pour plus de

détail, le lecteur est invité à consulter une discussion sur Mathoverflow
4
.

Ce théorème est aussi lié à une conjecture d’Eduardo Casas-Alvero, formulée

en 2001 :

Conjecture 1 (Casas-Alvero). Soit P un polynôme de degré au moins 1 ayant

une racine commune avec chacune de ses dérivées successives. Alors, toutes les

racines de P se confondent en un seul point.

4. Attention aux notations, le polynôme P (z) là-bas pourrait désigner notre P 0(z) ici


