3.4

Travail demandé :

Il vous est demandé d’étudier puis de présenter le texte joint a tra-
vers un exposé de synthese d'une durée comprise entre 15 et 20 minutes.

Si I'étude de la totalité du dossier et la préparation d’un exposé
cohérent dans la durée impartie ne vous parait pas possible, vous pou-
vez décider de vous limiter a une partie du dossier.

Remarques générales :

1. Les textes proposés, quelle que soit leur origine, peuvent présenter
des défauts (coquilles typographiques, négligences ou sous-entendus de
l’auteur, voire erreurs. ..) qui, sauf exception, n’ont pas été corrigés.

2. Les textes proposés peuvent contenir des exercices qu’il n’est pas
demandé de résoudre. Néanmoins, vous pouvez vous aider des énoncés
de ces exercices pour enrichir votre exposé.

3. Vous pouvez annoter les documents qui vous sont fournis. Vos an-
notations ne seront pas regardées par I’examinateur.



Autour de I’équation diophantienne 3 = 22 +d

0. Introduction.

L’équation en x et t, t3 = 22 4+ 2, semble avoir été étudiée pour la premiere fois en
1621 par Bachet qui, a partir de la solution évidente t = 3,2 = 5, a donné une méthode
géométrique pour construire d’autres solutions rationnelles, cf. ci-apres, 4.e. Fermat, lui,
se pose le probléme d’en trouver les solutions entieres (1) :

“Peut-on trouver en nombres entiers un carré autre que 25 qui, augmenté de 2, fasse
un cube ? A la premiere vue cela parait d’une recherche difficile ; en fractions une infinité
de nombres se déduisent de la méthode de Bachet ; mais la doctrine des nombres entiers,
qui est assurément tres belle et trés subtile, n’a été cultivée ni par Bachet, ni par aucun
autre dans les écrits venus jusqu’a moi.”

Bien entendu, et c’est habituel chez Fermat, il n’y a pas vraiment de traces de la
solution de ce probleme dans ses ceuvres, de sorte qu’il est difficile de dire comment il
pouvait démontrer les faits annoncés ci-dessus (cf. cependant [W] Ch.II, §XVI et ci-
dessous §5). En revanche on imagine assez bien comment ses successeurs (Euler, Gauss,
Kiimmer) pouvaient aborder ce probléeme et sa généralisation a 1’équation diophantienne
(c’est-a-dire en nombres entiers) t3 = 22 + d, avec d € N*, que nous désignerons ici sous
le nom d’équation de Bachet.

Ce texte ne prétend nullement étre un travail d’historien, mais son but est plutot, en
transposant sur cet exemple (qui a 'avantage d’étre beaucoup plus simple, mais cependant
non trivial) les tentatives de démonstration du “dernier théoreme de Fermat” au siecle
dernier, de montrer o1 et comment apparaissent les difficultés de la théorie et quels moyens
ont été employés pour y faire face. Les indications historiques sont, pour la plupart,
extraites du livre d’André Weil [W] (voir aussi [Bbki], [E], [EU], [R]).

1. Premiers pas.

On sait que Fermat s’est beaucoup intéressé aux nombres entiers qui sont sommes de
deux carrés d’entiers, ou, plus généralement, qui sont de la forme a? + db® pour d € N,



d # 0 et a,b € N. C’est le cas, bien entendu, du deuxieme membre de 1’équation de
Bachet.
Concernant ces entiers, il semble bien que I'identité

(1) (a® +b*)(u® +v?) = (au + ebv)? + (av — ebu)® avec €= =*1

(qui montre que les sommes de deux carrés sont stables par multiplication) ait été connue
d’Euclide pour u = v = 1 (sous forme géométrique) et, dans le cas général, de Diophante,
cf. [W] Ch.I §VI. De méme sa généralisation, pour d € N,

(2) (a? + db®)(u® + dv®) = (au + edbw)? + d(av — ebu)®  avec €= =+1

(qui montre que les entiers de la forme a? + db? sont stables par multiplication) semble
elle aussi avoir été connue depuis longtemps (et notamment du mathématicien indien
Brahmagupta, 598-6657, cf. [W] Ch.I, §VIII) et, en tous cas, a I’époque de Fermat. On
comprend mieux cette formule en utilisant les nombres complexes : on pose z = a + biV/d,
w = u + viv/d et on calcule |z|?> = 2Z = a® + db*.(*) La formule (2) exprime seulement
légalité (2Z)(ww) = (zw)(Zw) = (2w)(Zw). Fermat connaissait la formule (2), mais rien
n’indique qu’il ait jamais fait usage des imaginaires, pourtant introduits, notamment par
Bombelli, au siecle précédent. La méthode de calcul ci-dessus remonte a Euler et Lagrange,
vers le milieu du XVIII-eme siecle.

En appliquant la formule (2) avec u = a, v = b et ¢ = —1 on trouve (a? + db?)? =
(a® — db*)? + d(2ab)? ce qui montre que si un entier est de la forme a? + db? il en est de
méme de son carré (et ce de fagon non banale si a et b sont non nuls). La méme formule
appliquée avec u = a? — db?, v = 2ab et ¢ = —1 () (ce qui revient encore & calculer
(22)3 = 2323) donne la décomposition du cube, c’est-a-dire I'identité

(3) (a® 4+ db?)? = (a® — 3dab®)? + d(3a®b — db>)*.

L’hypothese que formule André Weil ([W] Ch. II, §XVI) est que Fermat, pour d = 1 ou
2, connaissait (savait prouver 7, cf. §5 pour une discussion) une réciproque de la formule
(3), c’est-a-dire, précisément, 1’assertion suivante que nous appellerons “Conjecture naive
pour l'entier d” :

Conjecture naive pour ’entier d.  Soit d € N*. On suppose que I'on a t3 = x? + dy?
avec r,y,t € Z, et © et y premiers entre eux. Alors il existe des entiers a,b tels que I'on
aitt = a® + db?, x = a® — 3dab? et y = 3a°b — db>.

Cette conjecture est exactement la réciproque de (3), & ceci pres que I'on suppose les
entiers x et y premiers entre eux. Nous verrons plus loin I'intérét de cette hypothese, qui
est évidemment vérifiée dans le cas de I’équation de Bachet puisqu’alors on a y = 1. Notons

(3) Les arithméticiens notent N(z) (“norme” de z) le carré du module de z. Cette quan-
tité joue un role capital en théorie des nombres, cf. par exemple ci-dessous Lemme 2,
Proposition 5 et encadrés 1 et 2.

(*) On vérifiera que les autres choix de signes ne donnent rien, cf. §5.
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des maintenant que la conjecture naive, si elle est vraie, fournit la solution de ’équation
de Bachet pour d = 2 annoncée par Fermat (pour le cas d = 4 cf. §4 b)). En effet, si on
a t3 = 22 + 2, comme x et 1 sont premiers entre eux, il existe des entiers a et b tels que
t=a?+2b%, = a’— 6ab? et 1 = 3a?b — 2b3 = b(3a® — 2b?). La derniere égalité montre
que 'on a b= +1et donc 3a? —2=0b=41. Onen déduit b=1et a =+1,dout =3 et
x = 5, comme annoncé.

En fait, si la conjecture naive est vraie pour un entier d elle donne toutes les solutions
de I’équation de Bachet 3 = 22 +d par le méme calcul que ci-dessus. On voit en effet qu’on
a encore b = +1, donc que I’équation ne peut avoir de solutions que si d est de la forme
d=3a®? £ 1 avec a € N et qu’alors, les solutions positives sont données par les formules :

(4) t=a’>+d, z=|a®—3ad|=3ad— d.

En tout état de cause, méme si la conjecture n’est pas vraie, les formules (4) fournissent
des solutions de 1’équation de Bachet deés que d est de la forme 3a? + € avec € = +1. Les
tableaux ci-dessous donnent les plus petits exemples d’entiers d pour lesquels on a de telles

solutions et les valeurs de t et x correspondantes.
)e=1,d=3a>+1

a 0 1 2 3 4 )
d 1 4 13 28 49 76
t 1 5) 17 37 65 101
T 0 11 70 225 024 1015

1 2 3 4 )
d 2 11 26 47 74
t 3 15 35 63 99
x ) o8 207 500 985

2. Une tentative de démonstration de la conjecture naive.

S’il n’est pas évident de savoir comment Fermat pouvait procéder, nous connais-
sons aujourd’hui une méthode (qui remonte sans doute a Euler) pour aborder ce type
de problemes. Elle consiste, comme on 1’a déja vu, a décomposer x2 + dy? dans C :

(5) 2% 4+ dy? = (¢ + iyVd)(z —iyVd) = 2z
en notant que les complexes z et Z sont & coefficients entiers, donc sont dans I’anneau (°)

Zlivd={z=z+iyVdeC | z,yec Z}.

(°) Dire que Z[iv/d] est un sous-anneau de C signifie simplement qu’il contient Z et qu'il
est stable par addition et multiplication.



Le premier avantage de ce cadre est qu’il permet de formuler tres simplement la conjecture
naive : on a t> = 22 + dy? = 27 et il s’agit de montrer que z est un cube dans Z[iv/d] (en
effet, la relation z = w?® avec w = a + ibv/d est exactement équivalente aux formules de la
conjecture naive).

Le second avantage de I’écriture ci-dessus réside dans le fait que les deux membres de
I’équation t> = 2Z sont maintenant décomposés en produits, ce qui va permettre d’utiliser
des raisonnements de divisibilité dans ’anneau Z[iv/d]. Pour s’en convaincre, remarquons
que, dans les entiers ordinaires, on montre aisément par ce type de méthodes (divisibilité,
nombres premiers) une proposition analogue :

Proposition 1.  Si un produit de deux entiers premiers entre eux est un cube, chacun
d’eux est un cube.

Démonstration. Supposons qu’on ait ab = t3 avec a et b premiers entre eux. On

décompose a et b en produits de nombres premiers :

— X1 Qo — 1 /Bs
a_pl ...pT7 b_ql ...qs_
Comme a et b sont premiers entre eux, les p; sont distincts des ¢;. Décomposons aussi

t=my"--m». On a alors

o, B

3_ 3’)/1 S’y _ (e%51 BS
t _7'(‘1 ﬂ-nn_pl pr ql ...qs'

Mais, en vertu de 'unicité de la décomposition, ceci montre que les p; sont parmi les 7 et,
puisqu’ils sont distincts des g;, cela prouve que leurs exposants sont multiples de 3, donc
que a est un cube (et de méme pour b).

Deux remarques s’imposent sur cette démonstration. D’abord, on y utilise de fagon
essentielle I'existence et 1'unicité de la décomposition d’un entier en produit de facteurs
premiers. Ensuite, on voit clairement l'intérét de ’hypothese a et b premiers entre eux
pour éviter que les facteurs premiers ne se mélangent (sinon le résultat peut étre en défaut,
cf. par exemple 8 = 2 x 4). C’est cette remarque qui justifie ’hypotheése = et y premiers
entre eux dans la conjecture naive, afin d’éviter des facteurs communs évidents de z et Z,
cf. ci-dessous lemmes 3 et 4.

Afin de prouver la conjecture naive, nous allons essayer de copier la démonstration
précédente en faisant dans anneau Z[iv/d] des raisonnements de divisibilité comme ceux
que nous avons faits ci-dessus dans Z. C’est d’ailleurs ce que faisaient allegrement, au
moins au début, Euler, Legendre et certains de leurs successeurs.

En termes modernes nous allons supposer que cet anneau est factoriel, c’est-a-dire
que tout élément y admet une décomposition unique (a 'ordre pres et a des inversibles
pres) en produit d’éléments irréductibles (ces éléments généralisent les nombres premiers
de Z, voir encadré 1 pour des définitions plus précises).

Nous verrons plus loin que cette hypothese est tres optimiste, mais pour I'instant nous
allons faire comme si elle était vérifiée. Notons déja que dans le cas de Z[i\/d] les éléments
inversibles ne sont pas trés nombreux, (°) ce qui simplifie notre tache :

() Ce ne serait pas le cas dans I'anneau Z[v/d] qui en contient une infinité, cf. [S] IV 6.
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Lemme 2. Pour d > 1 les seuls éléments inversibles de Z[iv/d] sont 1 et —1. Pour
d =1 les éléments inversibles de Z[i] sont +1, +i.

Démonstration. C’est le moment de se servir de la norme : si z = a+ibv/d est inversible
dans Z[iv/d] il existe w dans Z[iv/d] avec zw = 1. Comme la norme N(z) = |z|? est
multiplicative, on en déduit N(z)N(w) = 1. Comme N(z)(= a? + db?) et N(w) sont des
entiers > 0 cela n’est possible que si N(z) = 1. Si d > 1 on voit que cela impose b = 0,
a = *1, tandis que pour d = 1 on a, en outre, les solutions a = 0, b = +1.

Pour prouver la conjecture nous allons faire plusieurs hypothéeses simplificatrices,
voir §4 pour des compléments sur les autres cas. Nous supposerons donc que d n’a pas
de facteur carré (i.e., qu’il s’écrit d = p;y ---p, avec les p; premiers distincts) et qu’il est
congru a 1 ou 2 (mod.4). De plus, nous supposerons d # 1, de sorte que les seuls éléments
inversibles de Z[iv/d] sont 1 et —1 (cf. lemme 2).

On a alors le lemme suivant qui ne met en jeu que les entiers ordinaires :

Lemme 3.  Soit d un entier > 0 sans facteur carré et congru a 1 ou 2 modulo 4. Si on
atd =%+ dy?, avec xz,y,t € Z, et x,y premiers entre eux, alors t est impair et premier
avec d et x est premier avec d.

Démonstration. Dans les deux cas on raisonne par I'absurde :
Si t est pair on a t2 = 0 (mod.4). Si y est pair, x I’est aussi ce qui est absurde car
x et y sont premiers entre eux. Si y est impair on a y?> = 1 mod.4 donc —d = 22, mais,
comme —d = —1 ou 2 mod. 4, ¢’est impossible (—1 et 2 ne sont pas des carrés modulo 4).
Si p est un nombre premier qui divise ¢ et d il divise =, donc p? divise dy?, mais p ne
divise pas y, donc p? divise d ce qui est absurde car d n’a pas de facteur carré.

Passons a notre “démonstration” de la conjecture naive, sous les hypotheses ci-dessus
et en supposant Z[Z\/a] factoriel. Soient ¢, x,y vérifiant 3 = z? + dy?. On écrit, dans
'anneau Z[iv/d], t3 = 2Z avec z = x + iy\/d. Le lemme suivant va nous ramener dans la
situation de la proposition 1 :

Lemme 4.  On reprend les hypothéses du lemme 3 et on pose z = x + iy\/d. Alors les
nombres z et Z sont premiers entre eux dans Z[Z\/E]

Démonstration. Sinon, soit p € Z[iv/d] un facteur irréductible commun de z et Z.
Comme p divise 2z = 3 il divise t d’apres le lemme d’Euclide (cf. encadré 1). Par
ailleurs, p divise aussi z + Z et z — Z i.e., 2z et 2iyv/d. Comme z et y sont premiers entre
eux, le théoreme de Bézout dans Z montre qu’il existe \,u € Z avec Az + uy = 1, d’ou
2iv/d = 22(Niv/d) + pu(2iyv/d). On en déduit que p divise 2iv/d, done, a fortiori, 2d dans
Z[z\/a] Il divise donc a la fois t et 2d. Or, par le lemme 3, t et 2d sont premiers entre eux
et en écrivant encore Bézout dans Z : 1 = at + b(2d), on voit que cela implique que p est
inversible dans Z[iv/d] ce qui est absurde.

La démonstration de la conjecture (c’est-a-dire du fait que z est un cube) se fait alors
exactement comme si on était dans Z, on décompose z et Z en produits d’irréductibles
dans Z[i\/d] :

Z:p?l...pgr’ E:q?lqsﬁs



ou les p; sont distincts des ¢; en vertu du lemme 4. Décomposons aussi ¢ = 7]" - ).
On a alors

1 Bs

3 _ . 3 3Yn _ 01 an,
=t m =y P s

Mais, en vertu de "unicité de la décomposition, ceci montre que les p; sont (au signe
pres) parmi les 7, et, puisqu’ils sont distincts des g;, cela prouve que leurs exposants sont
multiples de 3. On en déduit que +z est un cube dans Z[i\/ﬁ], puis que z est un cube
car —1 = (—1)3. On a donc z = w® avec w = a + ib\/d, avec a,b € Z et si on développe
cette expression on trouve exactement les valeurs de x et y annoncées. De plus, on a alors
t3 = (ww)?, donc t = ww = a? + db? et on a prouvé la conjecture naive.

3. Discussion.

La question qui se pose maintenant est de savoir pour quels entiers d > 0 ’anneau
Z[i\/d] est factoriel. La réponse est rapide et décevante :

Proposition 5.  Soit d un entier > 0. L’anneau Z[iv/d] est factoriel si et seulement si
onad=1ou?2.

Démonstration. Si d =1 ou 2 'anneau est euclidien (i.e., on a une division euclidienne
comme dans les entiers) et cela implique qu’il est factoriel, voir encadré 2.

Si d > 3 on vérifie d’abord que 2 est irréductible dans ’anneau. Sinon, on aurait
2 = zw donc N(2) =4 = N(2)N(w) avec z et w non inversibles donc de normes # 1. Ceci
donne N(z) = N(w) = a? + db?® = 2 et on voit aussitot que c’est impossible.

Mais alors le nombre 2 contredit le lemme d’Euclide :
— si d est pair, on a d = —(iv/d)(iv/d) = 2d’ et 2 ne divise pas iV/d,
— si d est impair, on a d + 1 = (1 +14vd)(1 — iv/d) = 2m et on conclut de la méme facon.

On voit donc que la démonstration proposée ci-dessus ne fonctionne en réalité que
pour d = 1 ou d = 2 (et, avec une variante, pour d = 4, cf. §4.b), c’est-a-dire les cas
connus de Fermat.

Cette difficulté (que I'on peut considérer comme la premiere difficulté fondamentale de
la théorie algébrique des nombres) a été repérée (sous une forme voisine) par Lagrange des
la fin du XVIII-eme siecle, mais au début du XIX-eme siecle d’illustres mathématiciens
tombent encore dans le panneau. C’est le cas, semble-t-il, de Kiimmer lui-méme a qui
Dirichlet aurait signalé son erreur. Pour sortir de cette impasse Kiimmer a inventé, vers
1840, les “nombres idéaux”. Pour tenter d’expliquer 'idée de Kiimmer partons de la diffi-
culté rencontrée ci-dessus en considérant par exemple dans Z[Z\/g] les deux décompositions
du nombre 21 (7) :

(6) 21 =3 x 7= (4+iV5)(4 —iV5).

(") Note pour les experts : cet exemple n’est pas le plus simple mais il est choisi pour que
les facteurs 3 et 7 admettent dans Z[iv/d] des décompositions en produits de deux idéaux
premiers distincts, ce qui ne serait plus le cas si on utilisait les nombres 2 ou 5 qui sont

ramifiés dans Z[ivd] : (2) = (2,14 1iv5)? et (5) = (iv/5)>.
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On vérifie aisément que les facteurs sont des irréductibles (il suffit de noter que 3 et 7 ne
sont pas des normes d’éléments de Z[iv/d]) et on est donc en présence d’un cas de non-
unicité de la décomposition. Une hypothese plausible consiste a imaginer que Kiimmer a
interprété ’égalité (6) comme l’analogue de la décomposition dans Z :

(7) 14 x 15 = 10 x 21.

Dans ce dernier cas la non unicité de la décomposition vient, bien entendu, du fait que les
nombres ne sont pas irréductibles et (7) s’écrit simplement

(8) (2x7)x(5x3)=(2x5)x(7x3).

Si on désigne par (a,b) le pged de a et b dans N, on peut encore écrire (8) sous la forme
suivante :

(9) (14,10)(14, 21)(15, 10)(15,21) = (14,10)(15,10)(14, 21)(15,21)

que 'on peut généraliser au cas ab = uv grace au lemme évident suivant :

Lemme 6.  Soient a,u,v € N. On suppose que a divise uv et qu’on a (u,v) = 1. Alors,
on a a= (a,u)(a,v).

Sion a a,b,u,v € N avec ab = uv et (a,b) = (u,v) = 1, on peut écrire I'égalité ab = uv
sous la forme

(10) (a,u)(a,v)(b,u)(b,v) = (a,u)(b,u)(a,v)(b,v).

Revenons alors a ’égalité (6) que 'on interprete sous la forme ab = wv. Dans cette
décomposition, les divers facteurs : a =3, b =7, u =4 +1iV5 et v =4 — /5 n’ont pas de
diviseur commun dans Z[i\/&], puisqu’ils sont irréductibles. Toutefois, certains sont “plus
premiers entre eux” que les autres : 3 et 7 d’une part , 4 +iv5 et 4 — iv/5 d’autre part
sont non seulement premiers entre eux, mais étrangers, c’est-a-dire, cf. encadré 1, vérifient
une relation de Bézout dans Z[iv/d]. C’est clair pour 3 et 7 et pour les autres on a

(44 iV5) (14 + 9iV5) + (4 — iv/5)(10 — 10iV5) = 1.

En revanche si 3 et 4 + iy/5 sont premiers entre eux dans Z[iv/d] on vérifie facilement
qu’ils ne sont pas étrangers, et de méme pour les autres couples. Ce que Kiimmer imagine
alors c’est qu’en dépit des apparences (ou de 1’évidence) on doit pouvoir raffiner les deux
décompositions du nombre 21 comme dans le cas de ’égalité (7) et il introduit pour cela,
de maniere formelle dans un premier temps, des pged pour 3 et 4 + iv/5 (et les autres), de
telle sorte que (6) s’écrive alors sous la forme analogue a (9) ou (10) :

(3,4+iV5)(3,4—iV5)(7,4+iV5)(7,4—iV5) = (3,4+iV5)(7,4+iV5)(3,4—iV5)(7,4—iV/5).
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Ainsi, Kiimmer postule I'existence d’un “pged” formel de 3 et 4 + /5, noté (3,4 + iv/5),
ou encore, comme il le dit, d’un facteur commun “idéal” a ces deux nombres. L’idée est
séduisante, mais, bien entendu, il faut ensuite donner une base solide a cette théorie des
nombres idéaux et préciser les regles de calcul auxquelles ils sont soumis. C’est le travail
entrepris par Kiimmer dans les années 1840-1850 et poursuivi par Kronecker et Dedekind
jusqu’en 1880.

Voici ce que Kiimmer dit & ce sujet dans une lettre a Liouville datée de 1847, cf. [K]
p. 298 ou [EU] Article Kiimmer, (il s’agit du cas de Z[¢] et non de Z[iv/d], ¢f. Rem. 11.2,
mais le probleme est identique) : “quant a la propriété qu’un mombre complere ne peut
étre décomposé en facteurs premiers que d’une seule maniére, je puis vous assurer qu’elle
n’a pas lieu généralement tant qu’il s’agit des nombres de la forme :

ao+ a1l + -+ an_1¢" !

mais qu’on peut la sauver en introduisant un nouveau genre de nombres complexes que j’ai
nommé nombre complexe idéal. Les applications de cette théorie a la démonstration du
Th. de Fermat m’ont occupé depuis longtemps et j’ai réussi a faire dépendre l'impossibilité
de l’équation de deux propriétés d’un nombre premier, en sorte qu’il ne reste plus qu’a
rechercher si elles appartiennent a tous les nombres premiers.”.

En termes modernes le facteur commun “idéal” & 3 et 4+1iv/5 c’est simplement 1’idéal
(non principal) engendré & la fois par 3 et 4 + iy/5, noté aussi (3, 4 + iv/5) et il “divise”
les autres au sens ol il contient les idéaux engendrés par 3 et 4 +iv/5, cf. encadré 3. De
plus, cet idéal est exactement la somme des deux autres, ce qui correspond bien au pged.

Précisément, on montre aujourd’hui que I'anneau Z[iv/d] (pour d = 1,2 mod. 4, cf.
compléments pour le cas d = —1 mod. 4) est ce qu’on appelle un anneau de Dedekind, et
qu’on a dans un tel anneau un théoreme d’existence et d’unicité d’une décomposition de
tout idéal en produit d’idéaux premiers (cf. encadré 3 pour les définitions et [S] III 4 ou
[ST] I 5 pour les démonstrations). Ainsi pour revenir a l’exemple précédent, 'idéal (21)
de Z[i1/5] se décompose de maniere unique en produit de quatre idéaux premiers :

(21) = (3,44 iV5)(3,4 — iv/5) (7,4 4 iV5) (7,4 — iV/5).

En effet, cette formule résulte du lemme suivant, généralisation du lemme 6 :
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Lemme 7.  Soient A un anneau integre et a,u,v € A. On suppose que a divise uv et
que u et v sont étrangers, c’est-a-dire qu’on a, en termes d’idéaux, (u,v) = (1). Alors on
a la formule, sur les idéaux : (a) = (a,u)(a,v).

Démonstration. Le produit des idéaux est 'idéal I = (a2, av,au,uv), cf. encadré 3.
Comme uv est multiple de a il est clair que I est inclus dans (a). Réciproquement, on a
une relation de Bézout Au + pv = 1 qui donne, en multipliant par a, Aua + pva = a, ce
qui montre que a est dans I.

Ce lemme donne les deux décompositions
(3) = (3,4+iV5)(3,4—iVB),  (7)=(7,4+iV5)(7,4— iV/5)

d’ou la décomposition de (21) en produit de quatre idéaux premiers. Il donne aussi les
décompositions (4 +iv/5) = (3,4 41iv/5)(7,4+iV5) et (4 —iv/5) = (3,4 —i/5)(7,4 —i/5)
et ces diverses décompositions expliquent la non unicité de la décomposition du nombre
21 comme la formule (9) explique la formule (7).

On peut alors reprendre la démonstration de la conjecture naive dans le cas d sans
facteur carré et = 1,2 mod. 4. Le lemme 4 est essentiellement inchangé, pourvu qu’on le
formule en termes d’idéaux :

Lemme 8.  On reprend les hypothéses du lemme 3 et on pose z = = + iyv/d. Alors les
idéaux (z) et (Z) sont premiers entre eux dans Z[iv/d|.

Démonstration. Sinon, cf. encadré 3, ils seraient tous deux contenus dans un idéal
premier m (donc vérifiant m # A). Alors, 3 = 2Z serait dans m, donc aussi ¢ puisque
m est premier. De méme 2z = z + Z et 2iyv/d = z — Z seraient dans m. Comme z et y
sont premiers entre eux on a une relation de Bézout dans Z, ux + vy = 1. En multipliant
cette relation par 2iv/d on en déduit 2ivd € m et a fortiori 2d € m. Mais, en vertu du
lemme 3, t et 2d sont premiers entre eux et on a encore une relation de Bézout dans Z :
At + 2ud = 1, ce qui montre que 1 serait dans m, contrairement a I’hypothese m # A.

Ensuite le raisonnement est le méme que celui mené dans le cas factoriel mais en
utilisant la décomposition unique des idéaux en produits d’idéaux premiers. On décompose
les idéaux (z), (Z) et (t) en produit d’idéaux premiers :

() =P P, (H)=Q0 - QF () =Ry R

Dire que (z) et (Z) sont premiers entre eux signifie que les P; et les Q; sont distincts. On
a alors

(t) = ®)° =Ry - R = (2)(2) = Py - P Q) QFF

et, en vertu de l'unicité de la décomposition, on voit que les P; sont parmi les Ri et que
leurs exposants sont multiples de 3 : a; = 3c;. On aboutit donc a la conclusion que 'idéal

principal (z) est le cube de l'idéal I = 77{1 1...Pr". Si ce dernier est principal, disons
I = (w), on a z = £w? et on conclut comme précédemment. Le probléme qui nous reste
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posé est donc le suivant : un idéal I dont le cube est principal est-il automatiquement
principal 7 Ce n’est pas toujours vrai et cela constitue la deuxieme difficulté fondamentale
de la théorie : repasser des idéaux aux nombres.

Pour comprendre ce phénomene, on introduit, pour un anneau de Dedekind A, le
groupe C(A) des classes d’idéaux. Il s’agit de 'ensemble des idéaux de A, avec comme loi
le produit des idéaux, comme élément neutre 1'idéal unité (1) = A, mais ol on passe au
quotient par les idéaux principaux, c’est-a-dire qu’on les identifie tous a 1’élément neutre.
On montre, cf. [ST] IT 9, que le groupe C(A), dans le cas des anneaux de nombres,
est un groupe abélien fini dont l'ordre (i.e. le cardinal) est noté h(A) (et méme h(d) si
A = Z[iV/d)).

Alors, pour revenir & notre probleme, si 'idéal I® est principal sans que I le soit, cela
signifie que I® est ’élément neutre dans C(Z[iv/d]) mais pas I, autrement dit que I est un
élément d’ordre 3 dans le groupe C(Z[iv/d]). Comme Pordre d’un élément divise I’'ordre
du groupe ceci n’est possible que si h(d) est multiple de 3. Si h(d) n’est pas multiple de 3
notre preuve de la conjecture naive est complete et on a donc prouvé les théoremes suivants

(cf. pour plus de détails [IR] Ch.17 §10) :

Théoreme 9. Soit d un entier > 2, sans facteur carré, = 1,2 mod. 4, et tel que 3 ne
divise pas h(d). Alors la conjecture naive est vraie pour l’entier d.

Corollaire 10.  Soit d un entier > 2, sans facteur carré, = 1,2 mod. 4, et tel que 3 ne
divise pas h(d). Alors,

1) Si d n’est pas de la forme 3a? £ 1 I’équation de Bachet t3 = x? + d n’a pas de solutions
dans Z.

2) Si d = 3a® £ 1, les solutions positives de I’équation de Bachet sont

t =a®+d, r = a(3d — a®).

Remarques 11.

0) Bien entendu, pour appliquer ces résultats, il faut savoir calculer le nombre de
classes h(d) pour le d que l'on considére. En fait, ce nombre s’interprete aussi (pour
d = 1,2 mod. 4) comme le nombre de classes de formes quadratiques ax? + bxy + cy? a
coefficients entiers de discriminant —4d (modulo les changements de bases & coefficients
entiers et de déterminant 1), le lien entre les deux étant donné, une fois encore, par la
norme N (z + iyv/d) = 2% + dy?. Sous cette forme, Gauss savait calculer ce nombre au
moyen d’un algorithme trés simple, cf. [G], numéros 171-175 et 234-256. Evidemment,
a I’époque (1801), les idéaux n’avaient pas encore été inventés par Kiimmer et la notion
de groupe de classes d’idéaux et son lien avec les formes quadratiques entieres ne seront
clairement élucidés que par Kiimmer et surtout Dedekind (vers 1860-70). C’est pourtant
l’algorithme de Gauss qui a permis d’élaborer des tables donnant h(d) pour d < 4000000
(Buell, 1976), voir pour tout cela [ST] II 9 ou [BS] ou encore I’excellent exposé d’Oesterlé
[O].

1) Si 3 divise h(d) il se peut que ’équation admette des solutions méme si d n’est pas de
la forme 3a? 4+ 1. Par exemple pour d = 89 on a h(d) = 12 et la solution de I’équation
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est 53 = 125 = 62 +d = 36 + 89. Si 3 divise h(d) et si d est de la forme 3a® + 1, il peut
y avoir des solutions autres que celles annoncées dans le corollaire 10. Par exemple, pour
d = 26 = 3.3%2 — 1 la solution annoncée est t = 35,z = 207, mais il y a aussi la solution
évidente t = 3,x = 1, (ici on a h(26) = 6).

2) Les deux difficultés rencontrées ci-dessus (la non unicité de la décomposition en
irréductibles, le probléeme du retour des idéaux aux nombres) sont aussi celles qui se ren-
contrent dans 'approche de Kiimmer du dernier théoreme de Fermat : i.e., la recherche
des solutions entieres de xP + yP? = 2P, avec p premier. L’idée initiale est analogue : on
décompose le premier membre de ’équation dans les complexes

2Py = (z+y)(r+Cy) - (w+PTy) = 2P

ol on note ¢ (ou (p) une racine primitive p-ieme de I'unité. On est ainsi amené a travailler
dans 'anneau Z[(] des nombres complexes de la forme ag + a1 + -+ + ap—1¢P~1 avec
a; € Z, (notamment on voudrait montrer que les x + ('y sont des puissances p-iémes
dans cet anneau), et ce, en faisant des raisonnements de divisibilité comme ceux faits ci-
dessus pour I'équation de Bachet. Bien entendu (et c’est ce que disait Kiimmer dans le
texte cité plus haut), cet anneau n’est pas factoriel en général (c’est vrai seulement pour
p < 19). Comme pour I’équation de Bachet on contourne cette difficulté en utilisant la
décomposition en idéaux premiers mais on tombe ici encore sur la deuxieme difficulté, qui
est ici de savoir si un idéal I tel que I? soit principal est lui-méme principal, autrement dit,
si p divise ou non h, = h(Z[(,]). Si p ne divise pas h, on dit que p est un nombre premier
régulier et, pour ces nombres, la méthode de Kiimmer démontre le théoreme de Fermat.
Malheureusement si p n’est pas régulier on ne sait pas conclure par cette méthode. Oril y
a beaucoup de nombres premiers irréguliers : on sait qu’il y en a une infinité alors qu’on ne
le sait pas pour les réguliers. Cependant on conjecture (et on vérifie expérimentalement)
que la densité des réguliers est environ égale a 0,6065, donc plus grande que celle des
irréguliers. Les plus petits irréguliers sont 37,59 et 67.

Cette difficulté n’est toujours pas entierement surmontée a I’heure actuelle et la récente
démonstration du théoreme de Fermat par A. Wiles est fondée sur une approche radicale-
ment différente.
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Divisibilité

Soit A un anneau commutatif et integre (par exemple un
sous-anneau de C).

Si a et b sont dans A on dit que b divise a s’il existe ¢ € A
avec a = bc.

Un élément z de A est dit inversible s’il existe w € A avec
wz = 1. Les éléments inversibles divisent tous les éléments de A.

Un élément p de A, non nul et non inversible, est dit irréduc-
tible s’il n’a pas de diviseur non trivial, i.e. si p = ab entraine a
ou b inversible. Si p est irréductible et u inversible pu est encore
irréductible.

Deux éléments a,b de A sont dits premiers entre eux s’ils
n‘ont pas de diviseur commun non inversible. Une condition
suffisante (mais non nécessaire) pour cela est qu’ils vérifient une
égalité de Bézout Aa + ub =1 avec \, u € A. On dira alors qu’ils
sont étrangers dans A. Ils sont alors premiers entre eux dans
tout anneau contenant A.

Un anneau integre A est dit factoriel si tout élément non
nul a de A s’écrit de maniére unique (a4 permutation pres et a
des inversibles pres) sous la forme a = p;---p, ou les p; sont
irréductibles.

Contrairement a ce qu’on pourrait penser le point crucial de
cette définition n’est pas 'existence d’une décomposition, qui est
le plus souvent banale, cf. ci-dessous, mais son unicité. Cette
derniere équivaut au “lemme d’Euclide” : si un irréductible p
divise un produit zy il divise x ou y, comme on le voit aussitot en
décomposant x, y et xy en produits d’irréductibles.

Montrons l'existence de la décomposition en irréductibles
dans Z[iv/d]. On utilise la norme : supposons qu’il existe z €
Z[iv/d] qui ne se décompose pas et choisissons un tel z de norme
N (z) minimum (c’est possible car N(z) est un entier > 0). Alors
z n’est pas irréductible, donc s’écrit z = 2’2" avec 2’ et 2’ non
inversibles, donc de normes > 1 (cf. Lemme 2). Mais alors on a
N(z') < N(z) et N(2") < N(z), donc, vu le choix de z, 2’ et 2"
sont produits d’irréductibles, donc z aussi, ce qui est absurde.

Pour des précisions sur tous ces sujets d’arithmétique on
pourra consulter [P] Ch. II, [S] I ou [ST] I 4.

Encadré 1

16




Factorialité de Z[iv/d] pour d = 1,2

On montre d’abord 'existence d’une division euclidienne dans
Z[i/d] : étant donnés z et w non nuls dans Z[iv/d], il existe q et
r dans Z[ivd] tels que 'on ait z = wq + 7 et N(r) < N(z) (ou
encore |r| < |z|).

Notons que les points de Z[iv/d] dans le plan complexe for-
ment un réseau : ce sont les points a coordonnées entieres sur la
base 1,v/d. On considere alors le quotient exact z Jw = z+ivdy €
C et on Papproche par le point de Z[iv/d] le plus proche, soit
g = a+ivdb ol a et b sont les entiers les plus proches de z et
y. On a donc |[x —a|l < 1/2 et |y —b] < 1/2 et on en déduit

z < v1+d
2

E - =
inégalité ne vaut plus pour d > 3). Si on pose r = z — wq on a
alors r € Z[iv/d] et |r| < |w| comme annoncé.

< 1 (car d < 2, on notera que la derniere

On déduit de l'existence de la division le lemme d’Euclide.
On montre d’abord le théoreme de Bézout par des divisions suc-
cessives (c’est 1’algorithme d’Euclide pour trouver le pged, exacte-
ment comme dans Z) : si x,y € Z[iv/d] sont premiers entre eux il
existe A,y € Z[iv/d] avec Az + py = 1. Alors, si p est irréductible,
divise ab et ne divise pas a on a Ap + pa = 1 d’ou b = Apb + pab
et p divise b.

Encadré 2
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Idéaux d’un anneau

Si A est un anneau on appelle idéal de A une partie I qui
vérifie les deux propriétés suivantes :

1)siz,yel,alorsx+ye€l,

2)sizeletac A, ar el

L’exemple le plus simple d’idéal est I'idéal principal (a) en-
gendré par a € A, c’est I'ensemble des multiples de a. Les idéaux
principaux sont liés a la divisibilité par la relation évidente :

(%) a divise b <= (b) C (a).
Plus généralement l'idéal (aq,---,a,) engendré par les élé-
ments ay, -, a, € A est 'ensemble des éléments de la forme

A1aq + -+ Aa, avecles \; € A.

On montre que dans Z[iv/d] tous les idéaux sont de cette forme
(on dit qu’ils sont de type fini).

Si I et J sont des idéaux quelconques on dira, de maniere
analogue a (%) que I divise J si on a J C I. Deux idéaux ont
toujours un “plus grand commun diviseur” qui est 'idéal somme
I+J, ensemble des x+y pour x € I et y € J. Ainsi, I'idéal (a,b) =
(a) + (b) apparait comme pged des idéaux principaux engendrés
par a et b. Il n’est pas principal en général. Les idéaux I et J
seront dits premiers entre eux si le seul idéal qui les contient
est I'idéal unité (1) = A, c’est-a~dire sion a [ + J = A. Dans le
cas ou I et J sont principaux cela signifie que leurs générateurs
sont étrangers.

Le produit des idéaux I = (a1, -,ay) et J = (by, -+, bm)
est I'idéal I.J engendré par tous les produits a;b; (on vérifie que
cette définition ne dépend pas du choix des générateurs). Il est
contenu dans [ et J.

Un idéal I est dit premier s’il est différent de A et vérifie
Va,b€e A, ab€ I = aoub € I. Dans le cas d'un idéal principal
(p) cela signifie que p vérifie le “lemme d’Euclide”.

Pour montrer que deux idéaux sont premiers entre eux il suffit
de montrer qu’ils n’ont pas de facteur premier (idéal) commun,
c’est-a-dire qu’ils ne sont pas contenus dans un méme idéal premier
(cela résulte de l'existence d’idéaux maximaux et du fait que ceux-
ci sont premiers, cf. [P] Ch. II).

Encadré 3
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