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Travail demandé :

Il vous est demandé d’étudier puis de présenter le texte joint à tra-
vers un exposé de synthèse d’une durée comprise entre 15 et 20 minutes.

Si l’étude de la totalité du dossier et la préparation d’un exposé
cohérent dans la durée impartie ne vous parâıt pas possible, vous pou-
vez décider de vous limiter à une partie du dossier.

Remarques générales :

1. Les textes proposés, quelle que soit leur origine, peuvent présenter
des défauts (coquilles typographiques, négligences ou sous-entendus de
l’auteur, voire erreurs. . .) qui, sauf exception, n’ont pas été corrigés.

2. Les textes proposés peuvent contenir des exercices qu’il n’est pas
demandé de résoudre. Néanmoins, vous pouvez vous aider des énoncés
de ces exercices pour enrichir votre exposé.

3. Vous pouvez annoter les documents qui vous sont fournis. Vos an-
notations ne seront pas regardées par l’examinateur.



Autour de l’équation diophantienne t3 = x2 + d

par Daniel PERRIN

0. Introduction.

L’équation en x et t, t3 = x2 + 2 , semble avoir été étudiée pour la première fois en
1621 par Bachet qui, à partir de la solution évidente t = 3 , x = 5, a donné une méthode
géométrique pour construire d’autres solutions rationnelles, cf. ci-après, 4.e. Fermat, lui,
se pose le problème d’en trouver les solutions entières (1) :

“Peut-on trouver en nombres entiers un carré autre que 25 qui, augmenté de 2, fasse
un cube ? À la première vue cela parâıt d’une recherche difficile ; en fractions une infinité
de nombres se déduisent de la méthode de Bachet ; mais la doctrine des nombres entiers,
qui est assurément très belle et très subtile, n’a été cultivée ni par Bachet, ni par aucun
autre dans les écrits venus jusqu’à moi.”

Voici ce qu’il dit, plus précisément, dans une lettre de 1657 à son correspondant anglais
Sir Kenelm Digby (2) :

“Je lui avais écrit (à Frénicle) qu’il n’y a qu’un nombre carré entier qui, joint au
binaire, fasse un cube, et que ledit carré est 25, auquel, si vous ajoutez 2, il se fait 27, qui
est un cube. Il a peine à croire cette proposition négative, et la trouve trop hardie et trop
générale. Mais, pour augmenter son étonnement, je dis que, si l’on cherche un carré qui,
ajouté à 4 fasse un cube, il ne s’en trouvera jamais que deux en nombres entiers, savoir 4
et 121, car 4 ajouté à 4 fait 8 qui est un cube et 121 ajouté à 4 fait 125 qui est aussi un
cube ; mais, après cela, toute l’infinité des nombres n’en saurait fournir un troisième qui
ait la propriété.”

Bien entendu, et c’est habituel chez Fermat, il n’y a pas vraiment de traces de la
solution de ce problème dans ses œuvres, de sorte qu’il est difficile de dire comment il
pouvait démontrer les faits annoncés ci-dessus (cf. cependant [W] Ch.II, §XVI et ci-
dessous §5). En revanche on imagine assez bien comment ses successeurs (Euler, Gauss,
Kümmer) pouvaient aborder ce problème et sa généralisation à l’équation diophantienne
(c’est-à-dire en nombres entiers) t3 = x2 + d, avec d ∈ N∗, que nous désignerons ici sous
le nom d’équation de Bachet.

Ce texte ne prétend nullement être un travail d’historien, mais son but est plutôt, en
transposant sur cet exemple (qui a l’avantage d’être beaucoup plus simple, mais cependant
non trivial) les tentatives de démonstration du “dernier théorème de Fermat” au siècle
dernier, de montrer où et comment apparaissent les difficultés de la théorie et quels moyens
ont été employés pour y faire face. Les indications historiques sont, pour la plupart,
extraites du livre d’André Weil [W] (voir aussi [Bbki], [E], [EU], [R]).

1. Premiers pas.

On sait que Fermat s’est beaucoup intéressé aux nombres entiers qui sont sommes de
deux carrés d’entiers, ou, plus généralement, qui sont de la forme a2 + db2 pour d ∈ N,

(1) [F] Tome III, Observations sur Diophante, numéro 42 , p. 269
(2) [F] Tome II, Correspondance, p. 345.
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d ̸= 0 et a, b ∈ N. C’est le cas, bien entendu, du deuxième membre de l’équation de
Bachet.

Concernant ces entiers, il semble bien que l’identité

(1) (a2 + b2)(u2 + v2) = (au + ϵbv)2 + (av − ϵbu)2 avec ϵ = ±1

(qui montre que les sommes de deux carrés sont stables par multiplication) ait été connue
d’Euclide pour u = v = 1 (sous forme géométrique) et, dans le cas général, de Diophante,
cf. [W] Ch.I §VI. De même sa généralisation, pour d ∈ N,

(2) (a2 + db2)(u2 + dv2) = (au + ϵdbv)2 + d(av − ϵbu)2 avec ϵ = ±1

(qui montre que les entiers de la forme a2 + db2 sont stables par multiplication) semble
elle aussi avoir été connue depuis longtemps (et notamment du mathématicien indien
Brahmagupta, 598-665?, cf. [W] Ch.I, §VIII) et, en tous cas, à l’époque de Fermat. On
comprend mieux cette formule en utilisant les nombres complexes : on pose z = a + bi

√
d,

w = u + vi
√

d et on calcule |z|2 = zz = a2 + db2.(3) La formule (2) exprime seulement
l’égalité (zz)(ww) = (zw)(zw) = (zw)(zw). Fermat connaissait la formule (2), mais rien
n’indique qu’il ait jamais fait usage des imaginaires, pourtant introduits, notamment par
Bombelli, au siècle précédent. La méthode de calcul ci-dessus remonte à Euler et Lagrange,
vers le milieu du XVIII-ème siècle.

En appliquant la formule (2) avec u = a, v = b et ϵ = −1 on trouve (a2 + db2)2 =
(a2 − db2)2 + d(2ab)2 ce qui montre que si un entier est de la forme a2 + db2 il en est de
même de son carré (et ce de façon non banale si a et b sont non nuls). La même formule
appliquée avec u = a2 − db2, v = 2ab et ϵ = −1 (4) (ce qui revient encore à calculer
(zz)3 = z3z3) donne la décomposition du cube, c’est-à-dire l’identité

(3) (a2 + db2)3 = (a3 − 3dab2)2 + d(3a2b− db3)2.

L’hypothèse que formule André Weil ([W] Ch. II, §XVI) est que Fermat, pour d = 1 ou
2, connaissait (savait prouver ?, cf. §5 pour une discussion) une réciproque de la formule
(3), c’est-à-dire, précisément, l’assertion suivante que nous appellerons “Conjecture näıve
pour l’entier d ” :

Conjecture näıve pour l’entier d. Soit d ∈ N∗. On suppose que l’on a t3 = x2 +dy2

avec x, y, t ∈ Z, et x et y premiers entre eux. Alors il existe des entiers a, b tels que l’on
ait t = a2 + db2, x = a3 − 3dab2 et y = 3a2b− db3.

Cette conjecture est exactement la réciproque de (3), à ceci près que l’on suppose les
entiers x et y premiers entre eux. Nous verrons plus loin l’intérêt de cette hypothèse, qui
est évidemment vérifiée dans le cas de l’équation de Bachet puisqu’alors on a y = 1. Notons

(3) Les arithméticiens notent N(z) (“norme” de z) le carré du module de z. Cette quan-
tité joue un rôle capital en théorie des nombres, cf. par exemple ci-dessous Lemme 2,
Proposition 5 et encadrés 1 et 2 .
(4) On vérifiera que les autres choix de signes ne donnent rien, cf. §5.
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dès maintenant que la conjecture näıve, si elle est vraie, fournit la solution de l’équation
de Bachet pour d = 2 annoncée par Fermat (pour le cas d = 4 cf. §4 b)). En effet, si on
a t3 = x2 + 2, comme x et 1 sont premiers entre eux, il existe des entiers a et b tels que
t = a2 + 2b2, x = a3 − 6ab2 et 1 = 3a2b − 2b3 = b(3a2 − 2b2). La dernière égalité montre
que l’on a b = ±1 et donc 3a2 − 2 = b = ±1. On en déduit b = 1 et a = ±1, d’où t = 3 et
x = 5, comme annoncé.

En fait, si la conjecture näıve est vraie pour un entier d elle donne toutes les solutions
de l’équation de Bachet t3 = x2+d par le même calcul que ci-dessus. On voit en effet qu’on
a encore b = ±1, donc que l’équation ne peut avoir de solutions que si d est de la forme
d = 3a2 ± 1 avec a ∈ N et qu’alors, les solutions positives sont données par les formules :

(4) t = a2 + d, x = |a3 − 3ad | = 3ad− a3.

En tout état de cause, même si la conjecture n’est pas vraie, les formules (4) fournissent
des solutions de l’équation de Bachet dès que d est de la forme 3a2 + ϵ avec ϵ = ±1. Les
tableaux ci-dessous donnent les plus petits exemples d’entiers d pour lesquels on a de telles
solutions et les valeurs de t et x correspondantes.

1) ϵ = 1, d = 3a2 + 1

a 0 1 2 3 4 5

d 1 4 13 28 49 76

t 1 5 17 37 65 101

x 0 11 70 225 524 1015

2) ϵ = −1, d = 3a2 − 1

a 1 2 3 4 5

d 2 11 26 47 74

t 3 15 35 63 99

x 5 58 207 500 985

2. Une tentative de démonstration de la conjecture näıve.

S’il n’est pas évident de savoir comment Fermat pouvait procéder, nous connais-
sons aujourd’hui une méthode (qui remonte sans doute à Euler) pour aborder ce type
de problèmes. Elle consiste, comme on l’a déjà vu, à décomposer x2 + dy2 dans C :

(5) x2 + dy2 = (x + iy
√

d)(x− iy
√

d) = zz

en notant que les complexes z et z sont à coefficients entiers, donc sont dans l’anneau (5)

Z[i
√

d] = {z = x + iy
√

d ∈ C | x, y ∈ Z }.

(5) Dire que Z[i
√

d] est un sous-anneau de C signifie simplement qu’il contient Z et qu’il
est stable par addition et multiplication.
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Le premier avantage de ce cadre est qu’il permet de formuler très simplement la conjecture
näıve : on a t3 = x2 + dy2 = zz et il s’agit de montrer que z est un cube dans Z[i

√
d] (en

effet, la relation z = w3 avec w = a + ib
√

d est exactement équivalente aux formules de la
conjecture näıve).

Le second avantage de l’écriture ci-dessus réside dans le fait que les deux membres de
l’équation t3 = zz sont maintenant décomposés en produits, ce qui va permettre d’utiliser
des raisonnements de divisibilité dans l’anneau Z[i

√
d]. Pour s’en convaincre, remarquons

que, dans les entiers ordinaires, on montre aisément par ce type de méthodes (divisibilité,
nombres premiers) une proposition analogue :

Proposition 1. Si un produit de deux entiers premiers entre eux est un cube, chacun
d’eux est un cube.

Démonstration. Supposons qu’on ait ab = t3 avec a et b premiers entre eux. On
décompose a et b en produits de nombres premiers :

a = pα1
1 · · · pαr

r , b = qβ1
1 · · · qβs

s .

Comme a et b sont premiers entre eux, les pi sont distincts des qj . Décomposons aussi
t = πγ11 · · ·πγn

n . On a alors

t3 = π3γ1
1 · · ·π3γn

n = pα1
1 · · · pαr

r qβ1
1 · · · qβs

s .

Mais, en vertu de l’unicité de la décomposition, ceci montre que les pi sont parmi les πk et,
puisqu’ils sont distincts des qj , cela prouve que leurs exposants sont multiples de 3 , donc
que a est un cube (et de même pour b).

Deux remarques s’imposent sur cette démonstration. D’abord, on y utilise de façon
essentielle l’existence et l’unicité de la décomposition d’un entier en produit de facteurs
premiers. Ensuite, on voit clairement l’intérêt de l’hypothèse a et b premiers entre eux
pour éviter que les facteurs premiers ne se mélangent (sinon le résultat peut être en défaut,
cf. par exemple 8 = 2 × 4). C’est cette remarque qui justifie l’hypothèse x et y premiers
entre eux dans la conjecture näıve, afin d’éviter des facteurs communs évidents de z et z,
cf. ci-dessous lemmes 3 et 4.

Afin de prouver la conjecture näıve, nous allons essayer de copier la démonstration
précédente en faisant dans l’anneau Z[i

√
d] des raisonnements de divisibilité comme ceux

que nous avons faits ci-dessus dans Z. C’est d’ailleurs ce que faisaient allègrement, au
moins au début, Euler, Legendre et certains de leurs successeurs.

En termes modernes nous allons supposer que cet anneau est factoriel, c’est-à-dire
que tout élément y admet une décomposition unique (à l’ordre près et à des inversibles
près) en produit d’éléments irréductibles (ces éléments généralisent les nombres premiers
de Z, voir encadré 1 pour des définitions plus précises).

Nous verrons plus loin que cette hypothèse est très optimiste, mais pour l’instant nous
allons faire comme si elle était vérifiée. Notons déjà que dans le cas de Z[i

√
d] les éléments

inversibles ne sont pas très nombreux, (6) ce qui simplifie notre tâche :

(6) Ce ne serait pas le cas dans l’anneau Z[
√

d] qui en contient une infinité, cf. [S] IV 6.
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Lemme 2. Pour d > 1 les seuls éléments inversibles de Z[i
√

d] sont 1 et −1. Pour
d = 1 les éléments inversibles de Z[i] sont ±1,±i.

Démonstration. C’est le moment de se servir de la norme : si z = a+ ib
√

d est inversible
dans Z[i

√
d] il existe w dans Z[i

√
d] avec zw = 1. Comme la norme N(z) = |z|2 est

multiplicative, on en déduit N(z)N(w) = 1. Comme N(z)(= a2 + db2) et N(w) sont des
entiers ≥ 0 cela n’est possible que si N(z) = 1. Si d > 1 on voit que cela impose b = 0,
a = ±1, tandis que pour d = 1 on a, en outre, les solutions a = 0, b = ±1.

Pour prouver la conjecture nous allons faire plusieurs hypothèses simplificatrices,
voir §4 pour des compléments sur les autres cas. Nous supposerons donc que d n’a pas
de facteur carré (i.e., qu’il s’écrit d = p1 · · · pr avec les pi premiers distincts) et qu’il est
congru à 1 ou 2 (mod.4). De plus, nous supposerons d ̸= 1, de sorte que les seuls éléments
inversibles de Z[i

√
d] sont 1 et −1 (cf. lemme 2).

On a alors le lemme suivant qui ne met en jeu que les entiers ordinaires :

Lemme 3. Soit d un entier > 0 sans facteur carré et congru à 1 ou 2 modulo 4. Si on
a t3 = x2 + dy2, avec x, y, t ∈ Z, et x, y premiers entre eux, alors t est impair et premier
avec d et x est premier avec d.

Démonstration. Dans les deux cas on raisonne par l’absurde :
Si t est pair on a t3 ≡ 0 (mod. 4). Si y est pair, x l’est aussi ce qui est absurde car

x et y sont premiers entre eux. Si y est impair on a y2 ≡ 1 mod. 4 donc −d ≡ x2, mais,
comme −d ≡ −1 ou 2 mod. 4, c’est impossible (−1 et 2 ne sont pas des carrés modulo 4).

Si p est un nombre premier qui divise t et d il divise x, donc p2 divise dy2, mais p ne
divise pas y, donc p2 divise d ce qui est absurde car d n’a pas de facteur carré.

Passons à notre “démonstration” de la conjecture näıve, sous les hypothèses ci-dessus
et en supposant Z[i

√
d] factoriel. Soient t, x, y vérifiant t3 = x2 + dy2. On écrit, dans

l’anneau Z[i
√

d], t3 = zz avec z = x + iy
√

d. Le lemme suivant va nous ramener dans la
situation de la proposition 1 :

Lemme 4. On reprend les hypothèses du lemme 3 et on pose z = x + iy
√

d. Alors les
nombres z et z sont premiers entre eux dans Z[i

√
d].

Démonstration. Sinon, soit p ∈ Z[i
√

d] un facteur irréductible commun de z et z.
Comme p divise zz = t3 il divise t d’après le lemme d’Euclide (cf. encadré 1). Par
ailleurs, p divise aussi z + z et z − z i.e., 2x et 2 iy

√
d. Comme x et y sont premiers entre

eux, le théorème de Bézout dans Z montre qu’il existe λ, µ ∈ Z avec λx + µy = 1, d’où
2 i
√

d = 2x(λi
√

d) + µ(2 iy
√

d). On en déduit que p divise 2 i
√

d, donc, a fortiori, 2d dans
Z[i
√

d]. Il divise donc à la fois t et 2d. Or, par le lemme 3, t et 2d sont premiers entre eux
et en écrivant encore Bézout dans Z : 1 = at + b(2d), on voit que cela implique que p est
inversible dans Z[i

√
d] ce qui est absurde.

La démonstration de la conjecture (c’est-à-dire du fait que z est un cube) se fait alors
exactement comme si on était dans Z, on décompose z et z en produits d’irréductibles
dans Z[i

√
d] :

z = pα1
1 · · · pαr

r , z = qβ1
1 · · · qβs

s
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où les pi sont distincts des qj en vertu du lemme 4. Décomposons aussi t = πγ11 · · ·πγn
n .

On a alors
t3 = π3γ1

1 · · ·π3γn
n = pα1

1 · · · pαr
r qβ1

1 · · · qβS
s

Mais, en vertu de l’unicité de la décomposition, ceci montre que les pi sont (au signe
près) parmi les πk et, puisqu’ils sont distincts des qj , cela prouve que leurs exposants sont
multiples de 3 . On en déduit que ±z est un cube dans Z[i

√
d], puis que z est un cube

car −1 = (−1)3. On a donc z = w3 avec w = a + ib
√

d, avec a, b ∈ Z et si on développe
cette expression on trouve exactement les valeurs de x et y annoncées. De plus, on a alors
t3 = (ww)3, donc t = ww = a2 + db2 et on a prouvé la conjecture näıve.

3. Discussion.

La question qui se pose maintenant est de savoir pour quels entiers d > 0 l’anneau
Z[i
√

d] est factoriel. La réponse est rapide et décevante :

Proposition 5. Soit d un entier > 0. L’anneau Z[i
√

d] est factoriel si et seulement si
on a d = 1 ou 2 .

Démonstration. Si d = 1 ou 2 l’anneau est euclidien (i.e., on a une division euclidienne
comme dans les entiers) et cela implique qu’il est factoriel, voir encadré 2 .

Si d ≥ 3 on vérifie d’abord que 2 est irréductible dans l’anneau. Sinon, on aurait
2 = zw donc N(2) = 4 = N(z)N(w) avec z et w non inversibles donc de normes ̸= 1. Ceci
donne N(z) = N(w) = a2 + db2 = 2 et on voit aussitôt que c’est impossible.

Mais alors le nombre 2 contredit le lemme d’Euclide :
— si d est pair, on a d = −(i

√
d)(i
√

d) = 2d′ et 2 ne divise pas i
√

d,
— si d est impair, on a d + 1 = (1 + i

√
d)(1− i

√
d) = 2m et on conclut de la même façon.

On voit donc que la démonstration proposée ci-dessus ne fonctionne en réalité que
pour d = 1 ou d = 2 (et, avec une variante, pour d = 4, cf. §4.b), c’est-à-dire les cas
connus de Fermat.

Cette difficulté (que l’on peut considérer comme la première difficulté fondamentale de
la théorie algébrique des nombres) a été repérée (sous une forme voisine) par Lagrange dès
la fin du XVIII-ème siècle, mais au début du XIX-ème siècle d’illustres mathématiciens
tombent encore dans le panneau. C’est le cas, semble-t-il, de Kümmer lui-même à qui
Dirichlet aurait signalé son erreur. Pour sortir de cette impasse Kümmer a inventé, vers
1840, les “nombres idéaux”. Pour tenter d’expliquer l’idée de Kümmer partons de la diffi-
culté rencontrée ci-dessus en considérant par exemple dans Z[i

√
5] les deux décompositions

du nombre 21 (7) :

(6) 21 = 3 × 7 = (4 + i
√

5)(4− i
√

5).

(7) Note pour les experts : cet exemple n’est pas le plus simple mais il est choisi pour que
les facteurs 3 et 7 admettent dans Z[i

√
d] des décompositions en produits de deux idéaux

premiers distincts, ce qui ne serait plus le cas si on utilisait les nombres 2 ou 5 qui sont
ramifiés dans Z[i

√
d] : (2) = (2 , 1 + i

√
5)2 et (5) = (i

√
5)2.
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On vérifie aisément que les facteurs sont des irréductibles (il suffit de noter que 3 et 7 ne
sont pas des normes d’éléments de Z[i

√
d]) et on est donc en présence d’un cas de non-

unicité de la décomposition. Une hypothèse plausible consiste à imaginer que Kümmer a
interprété l’égalité (6) comme l’analogue de la décomposition dans Z :

(7) 14× 15 = 10× 21.

Dans ce dernier cas la non unicité de la décomposition vient, bien entendu, du fait que les
nombres ne sont pas irréductibles et (7) s’écrit simplement

(8) (2 × 7)× (5× 3) = (2 × 5)× (7× 3).

Si on désigne par (a, b) le pgcd de a et b dans N, on peut encore écrire (8) sous la forme
suivante :

(9) (14, 10)(14, 21)(15, 10)(15, 21) = (14, 10)(15, 10)(14, 21)(15, 21)

que l’on peut généraliser au cas ab = uv grâce au lemme évident suivant :

Lemme 6. Soient a, u, v ∈ N. On suppose que a divise uv et qu’on a (u, v) = 1. Alors,
on a a = (a, u)(a, v).
Si on a a, b, u, v ∈ N avec ab = uv et (a, b) = (u, v) = 1, on peut écrire l’égalité ab = uv
sous la forme

(10) (a, u)(a, v)(b, u)(b, v) = (a, u)(b, u)(a, v)(b, v).

Revenons alors à l’égalité (6) que l’on interprète sous la forme ab = uv. Dans cette
décomposition, les divers facteurs : a = 3, b = 7, u = 4 + i

√
5 et v = 4− i

√
5 n’ont pas de

diviseur commun dans Z[i
√

d], puisqu’ils sont irréductibles. Toutefois, certains sont “plus
premiers entre eux” que les autres : 3 et 7 d’une part , 4 + i

√
5 et 4 − i

√
5 d’autre part

sont non seulement premiers entre eux, mais étrangers, c’est-à-dire, cf. encadré 1, vérifient
une relation de Bézout dans Z[i

√
d]. C’est clair pour 3 et 7 et pour les autres on a

(4 + i
√

5)(14 + 9i
√

5) + (4− i
√

5)(10− 10i
√

5) = 1.

En revanche si 3 et 4 + i
√

5 sont premiers entre eux dans Z[i
√

d] on vérifie facilement
qu’ils ne sont pas étrangers, et de même pour les autres couples. Ce que Kümmer imagine
alors c’est qu’en dépit des apparences (ou de l’évidence) on doit pouvoir raffiner les deux
décompositions du nombre 21 comme dans le cas de l’égalité (7) et il introduit pour cela,
de manière formelle dans un premier temps, des pgcd pour 3 et 4 + i

√
5 (et les autres), de

telle sorte que (6) s’écrive alors sous la forme analogue à (9) ou (10) :

(3 , 4+i
√

5)(3 , 4−i
√

5)(7, 4+i
√

5)(7, 4−i
√

5) = (3 , 4+i
√

5)(7, 4+i
√

5)(3 , 4−i
√

5)(7, 4−i
√

5).
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Ainsi, Kümmer postule l’existence d’un “pgcd” formel de 3 et 4 + i
√

5, noté (3 , 4 + i
√

5),
ou encore, comme il le dit, d’un facteur commun “idéal” à ces deux nombres. L’idée est
séduisante, mais, bien entendu, il faut ensuite donner une base solide à cette théorie des
nombres idéaux et préciser les règles de calcul auxquelles ils sont soumis. C’est le travail
entrepris par Kümmer dans les années 1840-1850 et poursuivi par Kronecker et Dedekind
jusqu’en 1880.

Voici ce que Kümmer dit à ce sujet dans une lettre à Liouville datée de 1847, cf. [K]
p. 298 ou [EU] Article Kümmer, (il s’agit du cas de Z[ζ] et non de Z[i

√
d], cf. Rem. 11.2 ,

mais le problème est identique) : “quant à la propriété qu’un nombre complexe ne peut
être décomposé en facteurs premiers que d’une seule manière, je puis vous assurer qu’elle
n’a pas lieu généralement tant qu’il s’agit des nombres de la forme :

a0 + a1ζ + · · · + an−1ζ
n−1

mais qu’on peut la sauver en introduisant un nouveau genre de nombres complexes que j’ai
nommé nombre complexe idéal. Les applications de cette théorie à la démonstration du
Th. de Fermat m’ont occupé depuis longtemps et j’ai réussi à faire dépendre l’impossibilité
de l’équation de deux propriétés d’un nombre premier, en sorte qu’il ne reste plus qu’à
rechercher si elles appartiennent à tous les nombres premiers.”.

Dans un article de 1851 ([K] p. 447) il développe un étonnant parallèle avec la chimie :
“Qu’il me soit permis de signaler ici en peu de mots l’analogie de cette théorie de

la composition des nombres idéaux avec les principes fondamentaux de la chimie. La
composition des nombres complexes peut être envisagée comme l’analogue de la composition
chimique ; les facteurs premiers correspondent aux éléments (...). Les nombres complexes
idéaux sont comparables aux radicaux hypothétiques qui n’existent pas par eux-mêmes, mais
seulement dans les combinaisons ; le fluor, en particulier, comme élément qu’on ne sait
pas représenter isolément, peut être comparé à un facteur premier idéal. (...) Toutes ces
analogies qu’on pourra poursuivre et augmenter à volonté, ne proviennent pas d’un jeu
d’esprit oisif, mais elles sont bien fondées en ce que les mêmes idées fondamentales de
la composition et de la décomposition des éléments règnent aussi bien dans la chimie des
matières naturelles que dans celle des nombres complexes.”

En termes modernes le facteur commun “idéal” à 3 et 4+ i
√

5 c’est simplement l’idéal
(non principal) engendré à la fois par 3 et 4 + i

√
5, noté aussi (3 , 4 + i

√
5) et il “divise”

les autres au sens où il contient les idéaux engendrés par 3 et 4 + i
√

5, cf. encadré 3 . De
plus, cet idéal est exactement la somme des deux autres, ce qui correspond bien au pgcd.

Précisément, on montre aujourd’hui que l’anneau Z[i
√

d] (pour d ≡ 1, 2 mod. 4, cf.
compléments pour le cas d ≡ −1 mod. 4) est ce qu’on appelle un anneau de Dedekind, et
qu’on a dans un tel anneau un théorème d’existence et d’unicité d’une décomposition de
tout idéal en produit d’idéaux premiers (cf. encadré 3 pour les définitions et [S] III 4 ou
[ST] I 5 pour les démonstrations). Ainsi pour revenir à l’exemple précédent, l’idéal (21)
de Z[i

√
5] se décompose de manière unique en produit de quatre idéaux premiers :

(21) = (3 , 4 + i
√

5)(3 , 4− i
√

5)(7, 4 + i
√

5)(7, 4− i
√

5).

En effet, cette formule résulte du lemme suivant, généralisation du lemme 6 :
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Lemme 7. Soient A un anneau intègre et a, u, v ∈ A. On suppose que a divise uv et
que u et v sont étrangers, c’est-à-dire qu’on a, en termes d’idéaux, (u, v) = (1). Alors on
a la formule, sur les idéaux : (a) = (a, u)(a, v).

Démonstration. Le produit des idéaux est l’idéal I = (a2, av, au, uv), cf. encadré 3 .
Comme uv est multiple de a il est clair que I est inclus dans (a). Réciproquement, on a
une relation de Bézout λu + µv = 1 qui donne, en multipliant par a, λua + µva = a, ce
qui montre que a est dans I.

Ce lemme donne les deux décompositions

(3) = (3 , 4 + i
√

5)(3 , 4− i
√

5), (7) = (7, 4 + i
√

5)(7, 4− i
√

5)

d’où la décomposition de (21) en produit de quatre idéaux premiers. Il donne aussi les
décompositions (4+ i

√
5) = (3 , 4+ i

√
5)(7, 4+ i

√
5) et (4− i

√
5) = (3 , 4− i

√
5)(7, 4− i

√
5)

et ces diverses décompositions expliquent la non unicité de la décomposition du nombre
21 comme la formule (9) explique la formule (7).

On peut alors reprendre la démonstration de la conjecture näıve dans le cas d sans
facteur carré et ≡ 1, 2 mod. 4. Le lemme 4 est essentiellement inchangé, pourvu qu’on le
formule en termes d’idéaux :

Lemme 8. On reprend les hypothèses du lemme 3 et on pose z = x + iy
√

d. Alors les
idéaux (z) et (z) sont premiers entre eux dans Z[i

√
d].

Démonstration. Sinon, cf. encadré 3 , ils seraient tous deux contenus dans un idéal
premier m (donc vérifiant m ̸= A). Alors, t3 = zz serait dans m, donc aussi t puisque
m est premier. De même 2x = z + z et 2 iy

√
d = z − z seraient dans m. Comme x et y

sont premiers entre eux on a une relation de Bézout dans Z, ux + vy = 1. En multipliant
cette relation par 2 i

√
d on en déduit 2 i

√
d ∈ m et a fortiori 2d ∈ m. Mais, en vertu du

lemme 3, t et 2d sont premiers entre eux et on a encore une relation de Bézout dans Z :
λt + 2µd = 1, ce qui montre que 1 serait dans m, contrairement à l’hypothèse m ̸= A.

Ensuite le raisonnement est le même que celui mené dans le cas factoriel mais en
utilisant la décomposition unique des idéaux en produits d’idéaux premiers. On décompose
les idéaux (z), (z) et (t) en produit d’idéaux premiers :

(z) = Pα1
1 · · · Pαr

r , (z) = Qβ1
1 · · · Qβs

s , (t) = Rγ1
1 · · ·Rγn

n .

Dire que (z) et (z) sont premiers entre eux signifie que les Pi et les Qj sont distincts. On
a alors

(t3) = (t)3 = R3γ1
1 · · ·R3γn

n = (z)(z) = Pα1
1 · · · Pαr

r Qβ1
1 · · · Qβs

s

et, en vertu de l’unicité de la décomposition, on voit que les Pi sont parmi les Rk et que
leurs exposants sont multiples de 3 : αi = 3α′i. On aboutit donc à la conclusion que l’idéal
principal (z) est le cube de l’idéal I = Pα

′
1

1 · · · Pα
′
r

r . Si ce dernier est principal, disons
I = (w), on a z = ±w3 et on conclut comme précédemment. Le problème qui nous reste
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posé est donc le suivant : un idéal I dont le cube est principal est-il automatiquement
principal ? Ce n’est pas toujours vrai et cela constitue la deuxième difficulté fondamentale
de la théorie : repasser des idéaux aux nombres.

Pour comprendre ce phénomène, on introduit, pour un anneau de Dedekind A, le
groupe C(A) des classes d’idéaux. Il s’agit de l’ensemble des idéaux de A, avec comme loi
le produit des idéaux, comme élément neutre l’idéal unité (1) = A, mais où on passe au
quotient par les idéaux principaux, c’est-à-dire qu’on les identifie tous à l’élément neutre.
On montre, cf. [ST] II 9, que le groupe C(A), dans le cas des anneaux de nombres,
est un groupe abélien fini dont l’ordre (i.e. le cardinal) est noté h(A) (et même h(d) si
A = Z[i

√
d]).

Alors, pour revenir à notre problème, si l’idéal I3 est principal sans que I le soit, cela
signifie que I3 est l’élément neutre dans C(Z[i

√
d]) mais pas I, autrement dit que I est un

élément d’ordre 3 dans le groupe C(Z[i
√

d]). Comme l’ordre d’un élément divise l’ordre
du groupe ceci n’est possible que si h(d) est multiple de 3 . Si h(d) n’est pas multiple de 3
notre preuve de la conjecture näıve est complète et on a donc prouvé les théorèmes suivants
(cf. pour plus de détails [IR] Ch.17 §10) :

Théorème 9. Soit d un entier ≥ 2 , sans facteur carré, ≡ 1, 2 mod. 4, et tel que 3 ne
divise pas h(d). Alors la conjecture näıve est vraie pour l’entier d.

Corollaire 10. Soit d un entier ≥ 2 , sans facteur carré, ≡ 1, 2 mod. 4, et tel que 3 ne
divise pas h(d). Alors,
1) Si d n’est pas de la forme 3a2 ± 1 l’équation de Bachet t3 = x2 + d n’a pas de solutions
dans Z.
2) Si d = 3a2 ± 1, les solutions positives de l’équation de Bachet sont

t = a2 + d, x = a(3d− a2).

Remarques 11.
0) Bien entendu, pour appliquer ces résultats, il faut savoir calculer le nombre de
classes h(d) pour le d que l’on considère. En fait, ce nombre s’interprète aussi (pour
d ≡ 1, 2 mod. 4) comme le nombre de classes de formes quadratiques ax2 + bxy + cy2 à
coefficients entiers de discriminant −4d (modulo les changements de bases à coefficients
entiers et de déterminant 1), le lien entre les deux étant donné, une fois encore, par la
norme N(x + iy

√
d) = x2 + dy2. Sous cette forme, Gauss savait calculer ce nombre au

moyen d’un algorithme très simple, cf. [G], numéros 171-175 et 234-256. Évidemment,
à l’époque (1801), les idéaux n’avaient pas encore été inventés par Kümmer et la notion
de groupe de classes d’idéaux et son lien avec les formes quadratiques entières ne seront
clairement élucidés que par Kümmer et surtout Dedekind (vers 1860-70). C’est pourtant
l’algorithme de Gauss qui a permis d’élaborer des tables donnant h(d) pour d ≤ 4000000
(Buell, 1976), voir pour tout cela [ST] II 9 ou [BS] ou encore l’excellent exposé d’Oesterlé
[O].
1) Si 3 divise h(d) il se peut que l’équation admette des solutions même si d n’est pas de
la forme 3a2 ± 1. Par exemple pour d = 89 on a h(d) = 12 et la solution de l’équation
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est 53 = 125 = 62 + d = 36 + 89. Si 3 divise h(d) et si d est de la forme 3a2 ± 1, il peut
y avoir des solutions autres que celles annoncées dans le corollaire 10. Par exemple, pour
d = 26 = 3 .32 − 1 la solution annoncée est t = 35, x = 207, mais il y a aussi la solution
évidente t = 3 , x = 1, (ici on a h(26) = 6).
2) Les deux difficultés rencontrées ci-dessus (la non unicité de la décomposition en
irréductibles, le problème du retour des idéaux aux nombres) sont aussi celles qui se ren-
contrent dans l’approche de Kümmer du dernier théorème de Fermat : i.e., la recherche
des solutions entières de xp + yp = zp, avec p premier. L’idée initiale est analogue : on
décompose le premier membre de l’équation dans les complexes

xp + yp = (x + y)(x + ζy) · · · (x + ζp−1y) = zp

où on note ζ (ou ζp) une racine primitive p-ième de l’unité. On est ainsi amené à travailler
dans l’anneau Z[ζ] des nombres complexes de la forme a0 + a1ζ + · · · + ap−1ζp−1 avec
ai ∈ Z, (notamment on voudrait montrer que les x + ζiy sont des puissances p-ièmes
dans cet anneau), et ce, en faisant des raisonnements de divisibilité comme ceux faits ci-
dessus pour l’équation de Bachet. Bien entendu (et c’est ce que disait Kümmer dans le
texte cité plus haut), cet anneau n’est pas factoriel en général (c’est vrai seulement pour
p ≤ 19). Comme pour l’équation de Bachet on contourne cette difficulté en utilisant la
décomposition en idéaux premiers mais on tombe ici encore sur la deuxième difficulté, qui
est ici de savoir si un idéal I tel que Ip soit principal est lui-même principal, autrement dit,
si p divise ou non hp = h(Z[ζp]). Si p ne divise pas hp on dit que p est un nombre premier
régulier et, pour ces nombres, la méthode de Kümmer démontre le théorème de Fermat.
Malheureusement si p n’est pas régulier on ne sait pas conclure par cette méthode. Or il y
a beaucoup de nombres premiers irréguliers : on sait qu’il y en a une infinité alors qu’on ne
le sait pas pour les réguliers. Cependant on conjecture (et on vérifie expérimentalement)
que la densité des réguliers est environ égale à 0, 6065, donc plus grande que celle des
irréguliers. Les plus petits irréguliers sont 37, 59 et 67.

Cette difficulté n’est toujours pas entièrement surmontée à l’heure actuelle et la récente
démonstration du théorème de Fermat par A. Wiles est fondée sur une approche radicale-
ment différente.

4. Compléments.

a) Le cas d = 1.

Il est identique au cas étudié ci-dessus car les inversibles ±1,±i sont tous des cubes.

b) Le cas où d a un facteur carré.

Supposons d = k2d′ avec k ∈ N, k ≥ 2 et d′ vérifiant nos conditions usuelles (d′ sans
facteur carré et d′ ≡ 1, 2 mod. 4).

On trouve facilement les solutions de t3 = x2 + d = x2 + d′k2 telles que x et k soient
premiers entre eux en appliquant le théorème 9 à d′. On a alors en effet t = a2 + d′b2,
x = a3 − 3d′ab2 et k = 3a2b − d′b3. Il en résulte que b divise k ce qui ne laisse qu’un
nombre fini de possibilités pour b. Une fois b fixé on pose k = bk′ et on a k′ + d′b2 = 3a2.
Si k′ + d′b2 n’est pas de cette forme on n’a pas de solutions (pour ce choix de b) sinon on
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Divisibilité

Soit A un anneau commutatif et intègre (par exemple un
sous-anneau de C).

Si a et b sont dans A on dit que b divise a s’il existe c ∈ A
avec a = bc.

Un élément z de A est dit inversible s’il existe w ∈ A avec
wz = 1. Les éléments inversibles divisent tous les éléments de A.

Un élément p de A, non nul et non inversible, est dit irréduc-
tible s’il n’a pas de diviseur non trivial, i.e. si p = ab entrâıne a
ou b inversible. Si p est irréductible et u inversible pu est encore
irréductible.

Deux éléments a, b de A sont dits premiers entre eux s’ils
n’ont pas de diviseur commun non inversible. Une condition
suffisante (mais non nécessaire) pour cela est qu’ils vérifient une
égalité de Bézout λa + µb = 1 avec λ, µ ∈ A. On dira alors qu’ils
sont étrangers dans A. Ils sont alors premiers entre eux dans
tout anneau contenant A.

Un anneau intègre A est dit factoriel si tout élément non
nul a de A s’écrit de manière unique (à permutation près et à
des inversibles près) sous la forme a = p1 · · · pr où les pi sont
irréductibles.

Contrairement à ce qu’on pourrait penser le point crucial de
cette définition n’est pas l’existence d’une décomposition, qui est
le plus souvent banale, cf. ci-dessous, mais son unicité. Cette
dernière équivaut au “lemme d’Euclide” : si un irréductible p
divise un produit xy il divise x ou y, comme on le voit aussitôt en
décomposant x, y et xy en produits d’irréductibles.

Montrons l’existence de la décomposition en irréductibles
dans Z[i

√
d]. On utilise la norme : supposons qu’il existe z ∈

Z[i
√

d] qui ne se décompose pas et choisissons un tel z de norme
N(z) minimum (c’est possible car N(z) est un entier > 0). Alors
z n’est pas irréductible, donc s’écrit z = z′z′′ avec z′ et z′′ non
inversibles, donc de normes > 1 (cf. Lemme 2). Mais alors on a
N(z′) < N(z) et N(z′′) < N(z), donc, vu le choix de z, z′ et z′′

sont produits d’irréductibles, donc z aussi, ce qui est absurde.
Pour des précisions sur tous ces sujets d’arithmétique on

pourra consulter [P] Ch. II, [S] I ou [ST] I 4.

Encadré 1
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Factorialité de Z[i
√

d] pour d = 1, 2

On montre d’abord l’existence d’une division euclidienne dans
Z[i
√

d] : étant donnés z et w non nuls dans Z[i
√

d], il existe q et
r dans Z[i

√
d] tels que l’on ait z = wq + r et N(r) < N(z) (ou

encore |r| < |z|).
Notons que les points de Z[i

√
d] dans le plan complexe for-

ment un réseau : ce sont les points à coordonnées entières sur la
base 1, i

√
d. On considère alors le quotient exact z/w = x+i

√
dy ∈

C et on l’approche par le point de Z[i
√

d] le plus proche, soit
q = a + i

√
db où a et b sont les entiers les plus proches de x et

y. On a donc |x − a| ≤ 1/2 et |y − b| ≤ 1/2 et on en déduit
∣

∣

∣

∣

z

w
− q

∣

∣

∣

∣

≤
√

1 + d

2
< 1 (car d ≤ 2 , on notera que la dernière

inégalité ne vaut plus pour d ≥ 3). Si on pose r = z − wq on a
alors r ∈ Z[i

√
d] et |r| < |w| comme annoncé.

On déduit de l’existence de la division le lemme d’Euclide.
On montre d’abord le théorème de Bézout par des divisions suc-
cessives (c’est l’algorithme d’Euclide pour trouver le pgcd, exacte-
ment comme dans Z) : si x, y ∈ Z[i

√
d] sont premiers entre eux il

existe λ, µ ∈ Z[i
√

d] avec λx+µy = 1. Alors, si p est irréductible,
divise ab et ne divise pas a on a λp + µa = 1 d’où b = λpb + µab
et p divise b.

Encadré 2
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Idéaux d’un anneau

Si A est un anneau on appelle idéal de A une partie I qui
vérifie les deux propriétés suivantes :

1) si x, y ∈ I, alors x + y ∈ I,
2 ) si x ∈ I et a ∈ A, ax ∈ I.
L’exemple le plus simple d’idéal est l’idéal principal (a) en-

gendré par a ∈ A, c’est l’ensemble des multiples de a. Les idéaux
principaux sont liés à la divisibilité par la relation évidente :

(∗) a divise b⇐⇒ (b)⊂(a).

Plus généralement l’idéal (a1, · · · , an) engendré par les élé-
ments a1, · · · , an ∈ A est l’ensemble des éléments de la forme

λ1a1 + · · · + λnan avec les λi ∈ A.

On montre que dans Z[i
√

d] tous les idéaux sont de cette forme
(on dit qu’ils sont de type fini).

Si I et J sont des idéaux quelconques on dira, de manière
analogue à (∗) que I divise J si on a J ⊂ I. Deux idéaux ont
toujours un “plus grand commun diviseur” qui est l’idéal somme
I+J , ensemble des x+y pour x ∈ I et y ∈ J . Ainsi, l’idéal (a, b) =
(a) + (b) apparâıt comme pgcd des idéaux principaux engendrés
par a et b. Il n’est pas principal en général. Les idéaux I et J
seront dits premiers entre eux si le seul idéal qui les contient
est l’idéal unité (1) = A, c’est-à-dire si on a I + J = A. Dans le
cas où I et J sont principaux cela signifie que leurs générateurs
sont étrangers.

Le produit des idéaux I = (a1, · · · , an) et J = (b1, · · · , bm)
est l’idéal IJ engendré par tous les produits aibj (on vérifie que
cette définition ne dépend pas du choix des générateurs). Il est
contenu dans I et J .

Un idéal I est dit premier s’il est différent de A et vérifie
∀a, b ∈ A, ab ∈ I =⇒ a ou b ∈ I. Dans le cas d’un idéal principal
(p) cela signifie que p vérifie le “lemme d’Euclide”.

Pour montrer que deux idéaux sont premiers entre eux il suffit
de montrer qu’ils n’ont pas de facteur premier (idéal) commun,
c’est-à-dire qu’ils ne sont pas contenus dans un même idéal premier
(cela résulte de l’existence d’idéaux maximaux et du fait que ceux-
ci sont premiers, cf. [P] Ch. II).

Encadré 3
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