
Pour conclure, nous proposons ci-dessous un exemple d’exercice posé lors de la session 2025, 
accompagné d’éléments de correction et de commentaires.

Énoncé

Soit A ∈ Mn(R) une matrice symétrique définie positive. On définit f : Sn(R) → R par

f(M) = Tr(M − AeM ).

a) La fonction f est-elle majorée ? Est-elle minorée ?

b) Montrer que f atteint son maximum.

c) En quel(s) point(s) f atteint-elle ce maximum?

Commentaires

Traiter en entier l’exercice dans le temps imparti est assez difficile, mais résoudre les deux

premières questions permet déjà de s’assurer une note tout à fait correcte.

a) Pour commencer, on peut s’intéresser au cas où n = 1. On est ainsi amené, étant donné un

réel a > 0, à étudier la fonction g(x) = x− aex. Celle-ci tend vers −∞ lorsque x → ±∞ donc

il existe u, v ∈ R tels que pour tout x ∈ R \ [u, v], on ait g(x) < g(0). De plus, la restriction de

g au segment [u, v] étant continue, elle atteint un maximum c. Par conséquent g est majorée

sur R par c mais elle n’est pas minorée.

On s’intéresse maintenant au cas général. Montrons que f n’est pas minorée. D’après le théorème

spectral, il existe une matrice orthogonale P et une matrice diagonale D à coefficients stricte-

ment positifs telles que A = PDP−1. En effectuant le changement de variables M = PM ′P−1,

on a f(M) = Tr(M ′ −DeM
′
). Ainsi on se ramène au cas où A est diagonale.

En prenant M1,1 = x et Mi,j = 0 pour tout (i, j) ≠ (1, 1), on a f(M) = x−a11e
x−a22−· · ·−ann

donc, d’après le cas n = 1, la fonction f n’est pas minorée.

Montrons que f est majorée. À ce stade, si le candidat bloque, l’examinateur peut être amené

à suggérer de montrer le

Lemme. Soit A et M deux matrices symétriques telles que A soit positive. Alors Tr(AeM) ⩾ 0.

Montrons le lemme. On a Tr(AeM) = Tr(BAB) où B = eM/2. La matrice BAB est claire-

ment symétrique, et elle est aussi positive puisque pour tout vecteur non nul X ∈ Rn on a

XT (BAB)X = (BX)TA(BX) ⩾ 0. Par conséquent ses valeurs propres sont toutes positives ou

nulles, et sa trace est bien positive ou nulle comme annoncé.

Revenons à l’exercice. Soit a la plus petite valeur propre de A. Notons comme ci-dessus g(x) =

x− aex, et notons c = sup(g). On a

f(M) = Tr(M − aeM)− Tr((A− aI)eM).

Soient λ1, . . . , λn les valeurs propres de M . En diagonalisant M , on voit que le premier terme

est égal à
∑n

i=1 g(λi).
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D’autre part, le terme Tr((A − aI)eM) est positif d’après le lemme (la matrice A − aI étant

positive comme on le voit par diagonalisation). Par conséquent, f(M) ⩽
∑n

i=1 g(λi) ⩽ nc.

b) Observons d’abord que f est continue : l’exponentielle est continue car c’est la somme d’une

série qui converge normalement sur tout compact. Comme la somme et le produit matriciels

sont continus, ainsi que la trace, la fonction f est continue sur Sn(R).

Nous allons montrer qu’il existe un compact K tel que f(M) < f(0) pour tout M ∈ Sn(R)\K.

Ceci permettra de conclure puisque la restriction de f à K atteint un maximum d’après le

théorème des bornes atteintes, et alors il s’agit du maximum de f sur Sn(R) tout entier.

Nous avons vu dans la démonstration de la question a) que f(M) ⩽
∑n

i=1 g(λi). Par conséquent

pour tout j on a f(M) ⩽ (n− 1)c+ g(λj).

Soit α < β des réels tels que ∀x ∈ R \ [α, β], g(x) < f(0)− (n− 1)c. Posons

K = {M ∈ Sn(R) | Sp(M) ⊂ [α, β]}.

D’après ce qui précède, l’inégalité f(M) < f(0) est bien vérifiée pour tout M ∈ Sn(R) \K. Il

reste à montrer que K est compact.

Le fait que Sp(M) ⊂ [α, β] équivaut à ce que M − αI et βI −M sont positives, donc

K = {M ∈ Sn(R) | ∀X ∈ Rn, α||X||2 ⩽ XTMX ⩽ β||X||2}

(où Rn est muni de la norme euclidienne). Par conséquent

K =
⋂

X∈Rn,||X||=1

φ−1
X ([α, β])

où φX(M) = XTMX. Comme pour tout X, φX est continue de Sn(R) dans R, et comme [α, β]

est fermé, ceci entrâıne que K est fermé.

De plus, en munissant Sn(R) de la norme d’opérateur ||M || = supX∈Rn,||X||=1 ||MX||, on voit

queK est inclus dans la boule de rayon max(|α|, |β|), donc il est borné, ce qui achève de montrer

sa compacité.

c) Soit M un point où f atteint son maximum. Supposons d’abord que A = diag(a11, . . . , ann)

et M = diag(λ1, . . . , λn) sont diagonales. Si H = diag(µ1, . . . , µn) est diagonale alors f(M +

H) − f(M) =
∑

µi − aiie
λi(eµi − 1). Cette expression est maximale lorsque (µ1, . . . , µn) =

(0, . . . , 0) donc, en dérivant en 0 par rapport à µi, il vient 1 = aiie
λi , c’est-à-dire λi = − ln(aii).

Autrement dit, M est l’unique l’endomorphisme qui coindice avec − ln(λ)Id sur tout espace

propre ker(A− λId).

Ce résultat reste vrai si A et M commutent car dans ce cas A et M sont diagonalisables dans

une même base orthonormée (cela se montre en observant que les espaces propres de A sont

stables par M).

Pour conclure l’exercice, il reste à montrer M commute nécessairement avec A. Supposons le

contraire. Traitons d’abord le cas n = 2. Quitte à conjuguer par une matrice orthogonale, on
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se ramène au cas où M = diag(a, b) avec a ̸= b. Soit H =

(
0 c

0 0

)
. Calculons explicitement

l’exponentielle de M + H. Pour cela, comme M + H est triangulaire supérieure, avec pour

valeurs propres a et b ; puisque a ̸= b, la matrice M + H est diagonalisable. On vérifie (en

utilisant la diagonalisabilité) que pour tout polynôme φ tel que φ(a) = ea et φ(b) = eb, on a

eM+H = φ(M +H). En prenant φ(x) = ea+µ(x− a) où µ = eb−ea

b−a
, il vient eM+H =

(
ea µc

0 eb

)
.

On a ainsi f(M +H)− f(M) = −a21µc. Par conséquent a21 = 0 et de même a12 = 0.

Le cas des matrices n × n est similaire : on se ramène au cas où M = diag(λ1, . . . , λn) est

diagonale. Pour tout couple (i, j) tel que λi ̸= λj, on considère H = cEij (où Eij est la matrice

dont le coefficient (i, j) vaut 1 et tous les autres coefficients sont nuls). Un calcul similaire donne

que aji = 0 et de même aij = 0, donc A et M commutent.
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