En poursuivant votre navigation, vous acceptez l'utilisation de cookies destinés à améliorer la performance de ce site et à vous proposer des services et contenus personnalisés.


Onglets principaux

Photo personnelle
Tard Cédric


Bureau : 1:30-17&B
Téléphone : +33169334843
Département/Laboratoire/Service : CA/DER/LAB/LCM
Fonctions complémentaires :

Bibliographie & travail en cours




CNRS Research Associate / Chargé de Recherche CNRS

Professor of Chemistry at the Chemistry Department / Professeur Chargé de Cours au Département de Chimie

(ResearchGate link)


  • Research experience
2017 to present
CNRS Scientist / Professor of Chemistry
Laboratoire de Chimie Moléculaire, Ecole Polytechnique, Palaiseau.
CNRS Scientist
Laboratoire d'Electrochimie MoléculaireUniversité Paris-Diderot
Post-doctoral fellow
Laboratoire d'Electrochimie MoléculaireUniversité Paris-Diderot
Post-doctoral fellow
Laboratoire de Physique de la Matiere CondenséeEcole Polytechnique, Palaiseau
Group of Prof. Jean-Pierre Boilot
  • Education
Habilitation à Diriger des Recherches, Jan. 2015 (Université Paris-Diderot, Paris)
Title: Proton coupled electron transfer: Relays, bond breaking and catalysis (link)
Ph.D., Organometallic chemistry, Sept. 2005 (John Innes Centre, Norwich, U. K.)
Thesis Topic: Chemistry related to the [FeFe]-Hydrogenases (link)
D.E.A. des Systèmes Bioorganiques et Bioinorganiques, July 2002 (Universite Paris-Sud, Orsay, France)
  • Scientific Collaborations

since 2012, University of Michigan, Department of Chemistry, Prof. Vincent L. Pecoraro

4 months visit in Feb.–June 2012.
since 2010, Université Paris–Diderot, Laboratoire ITODYS, UMR 7086, Dr. Marion Giraud


  • Inorganic chemistry, CHI565 (36 h) - 3A, Master 1, Chemistry Department


  • Mechanistic studies of proton-coupled electron transfer (PCET) reactions



  • Transition metal nanoparticles for electrocatalytic activation of small molecules

Publications et Liens

34. Electronic communication between dithiolato-bridged diiron carbonyl and S-bridged redox-active centres.
C. Tard, S. J. Borg, S. A. Fairhurst, C. J. Pickett, S. P. Best
Inorganics 7 (2019) 37. [DOI]
33. Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers.
M. Faustini, M. Giraud, D. Jones, J. Rozière, M. Dupont, T. R. Porter, S. Nowak, M. Bahri, O. Ersen, C. Sanchez, C. Boissière, C. Tard, J. Peron
Adv. Energy Mater. 9 (2019) 1802136. [DOI]
32. Clarifying the copper coordination environment in a de novo designed red copper protein.
K. J. Koebke, L. Ruckthong, J. L. Meagher, E. Mathieu, J. Harland, A. Deb, N. Lehnert, C. Policar, C. Tard, J. E. Penner-Hahn, J. A. Stuckey, V. L. Pecoraro
Inorg. Chem., 57 (2018) 12291-12302. [DOI]
31. Ligand “noninnocence” in coordination complexes vs. kinetic, mechanistic, and selectivity issues in electrochemical catalysis.
C. Costentin, J.-M. Savéant and C. Tard
Proc. Natl. Acad. Sci. U. S. A., 115 (2018) 9104-9109. [DOI]
30. pH-dependence on HER electrocatalytic of iron sulfide pyrite nanoparticles.
M. Villalba, J. Peron, M. Giraud and C. Tard
Electrochem. Commun., 91 (2018) 10-14. [DOI]
29. Development of a rubredoxin-type center embedded in a de novo designed three-helix bundle.
A. Tebo, T. B. J. Pinter, R. Garci-Serres, A. L. Speelman, C. Tard, O. Sénèque, G. Blondin, J.-M. Latour, J. E. Penner-Hahn, N. Lehnert and V. L. Pecoraro
Biochemistry, 57 (2018) 2308-2316. [DOI]
28. Catalysis of CO2 electrochemical reduction by protonated pyridine and similar molecules. Useful lessons from a methodological misadventure.
C. Costentin, J.-M. Savéant and C. Tard
ACS Energy Lett., 3 (2018) 695-703. [DOI]
27. Hollow iridium-based catalysts for the oxygen evolution reaction in proton exchange membrane water electrolyzers.
J. Peron, M. Faustini, M. Giraud, J. Rozière, D. Jones, C. Boissière and C. Tard
ECS Trans., 80 (2017) 1077-1084. [DOI]
26. Nanodiffusion in electrocatalytic films.
C. Costentin, C. Di Giovanni, M. Giraud, J.-M. Savéant and C. Tard
Nature Mat., 16 (2017) 1016-1021. [DOI]
25. Conductive mesoporous catalytic films. Current distortion and performance degradation by dual-phase ohmic drop effects. Analysis and remedies.
C. P. Andrieux, C. Costentin, C. Di Giovanni, J.-M. Savéant and C. Tard
J. Phys. Chem. C, 120 (2016) 21263-21271. [DOI]
24. Low-cost nanostructured iron sulfide electrocatalysts for PEM water electrolysis.
C. Di Giovanni, Á. Reyes-Carmona, A. Coursier, S. Nowak, J.−M. Grenèche, H. Lecoq, L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud and C. Tard
ACS Catal., 6 (2016) 2626-2631. [DOI]
23. Attempts to catalyze the electrochemical CO2-to-methanol conversion by biomimetic 2e-+2H+ transferring molecules.
J.-M. Savéant and C. Tard
J. Am. Chem. Soc., 138 (2016) 1017-1021. [DOI]
22. De novo design and characterization of copper metallopeptides inspired by native cupredoxins.
J. S. Plegaria, M. Duca, C. Tard, T. J. Friedlander, A. Deb, J. E. Penner-Hahn and V. L. Pecoraro
Inorg. Chem., 54 (2015) 9470-9482. [DOI]
21. Proton-coupled electron transfer in azobenzene-hydrazobenzene couples with pending acid-base functions. Hydrogen-bonding and structural effects.
J.-M. Savéant and C. Tard
J. Am. Chem. Soc., 136 (2014) 8907-8910. [DOI]
20.Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water.
C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Grenèche, H. Lecoq, L. Mouton, M. Giraud and C. Tard
ACS Catal., 4 (2014) 681-687. [DOI]
19. Breaking bonds with electrons and protons. Models and examples.
C. Costentin, M. Robert, J.-M. Savéant and C. Tard
Acc. Chem. Res., 47 (2014) 271-280. [DOI]
18. Hydrogen-bond relays in concerted proton–electron transfers.
J. Bonin, C. Costentin, M. Robert, J.-M. Savéant and C. Tard
Acc. Chem. Res., 45 (2012) 372-381. [DOI]
17. Concerted heavy-atom bond cleavage and proton and electron transfers illustrated by proton-assisted reductive cleavage of an O–O bond.
C. Costentin, V.Hajj, M. Robert, J.-M. Savéant and C. Tard
Proc. Natl. Acad. Sci. U. S. A., 108 (2011) 8559-8564. [DOI]
16. H-bond relays in proton-coupled electron transfers. Oxidation of a phenol concerted with proton transport to a distal base through an OH relay.
C. Costentin, M. Robert, J.-M. Savéant and C. Tard
Phys. Chem. Chem. Phys., 13 (2011) 5353–5358. [DOI]
15. Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands.
S. Perruchas, C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin and J.-P. Boilot
Inorg. Chem., 50 (2011) 10682–10692. [DOI]
14. Effect of base pairing on the electrochemical oxidation of guanine.
C. Costentin, V. Hajj, M. Robert, J.-M. Savéant, and C. Tard
J. Am. Chem. Soc., 132 (2010) 10142-10147. [DOI]
13. Inserting a hydrogen-bond relay between proton exchanging sites in proton-coupled electron transfers.
C. Costentin, M. Robert, J.-M. Savéant and C. Tard
Angew. Chem. Int. Ed., 49 (2010) 3803-3806. [DOI]
12. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases.
C. Tard and C. J. Pickett
Chem. Rev., 109 (2009) 2245-2274. [DOI]
11. Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses.
P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J.-F. Roch, D. Chauvat and C. Radzewicz
Opt. Express, 17 (2009) 4652-4658. [DOI]
10. Thermochromic luminescence of sol-gel films based on copper iodide clusters.
C. Tard, S. Perruchas, S. Maron, X. F. Le Goff, F. Guillen, A. Garcia, J. Vigneron, A. Etcheberry, T. Gacoin and J.-P. Boilot
Chem. Mater., 20 (2008) 7010-7016. [DOI]
9. Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy.
L. Le Xuan, C. Y. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval and J.-F. Roch
Small, 4 (2008) 1332-1336. [DOI]
8. Controlling carbon monoxide binding at di-iron units related to the iron-only hydrogenase sub-site.
F. F. Xu, C. Tard, X. F. Wang, S. K. Ibrahim, D. L. Hughes, W. Zhong, X. R. Zeng, Q. Y. Luo, X. M. Liu and C. J. Pickett
Chem. Commun., (2008) 606-608. [DOI]
7. Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels.
M. H. Cheah, C. Tard, S. J. Borg, X. M. Liu, S. K. Ibrahim, C. J. Pickett and S. P. Best
J. Am. Chem. Soc., 129 (2007) 11085-11092. [DOI]
6. Electropolymeric materials incorporating subsite structures related to iron-only hydrogenase: active ester functionalised poly(pyrroles) for covalent binding of {2Fe3S}-carbonyl/cyanide assemblies.
S. K. Ibrahim, X. M. Liu, C. Tard and C. J. Pickett
Chem. Commun., (2007) 1535-1537. [DOI]
5. Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters.
L. Le Xuan, S. Brasselet, F. Treussart, J.-F. Roch, F. Marquier, D. Chauvat, S. Perruchas, C. Tard and T. Gacoin
Appl. Phys. Lett., 89 (2006) 121118-121113. [DOI]
4. On the electronic structure of the hydrogenase H-cluster.
D. E. Schwab, C. Tard, E. Brecht, J. W. Peters, C. J. Pickett and R. K. Szilagyi
Chem. Commun., (2006) 3696-3698. [DOI]
3. Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds.
X. M.  Liu, S. K. Ibrahim, C. Tard and C. J. Pickett
Coord. Chem. Rev., 249 (2005) 1641-1652. [DOI]
2. Synthesis of the H-cluster framework of iron-only hydrogenase.
C. Tard, X. M. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L.-S. Wang, G. Sawers and C. J. Pickett
Nature, 433 (2005) 610-613. [DOI]
1. A novel {FeI-FeII-FeII-FeI} iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution.

C. Tard, X. M. Liu, D. L. Hughes and C. J. Pickett

Chem. Commun., (2005) 133-135. [DOI]
Publications HAL: 


Publications HAL: 

{{ type="webpage_from_hal" url="http://hal.univ-grenoble-alpes.fr/Public/afficheRequetePubli.php?auteur_exp=boris,morel&CB_auteur=oui&CB_titre=oui&CB_article=oui&langue=Francais&tri_exp=annee_publi&tri_exp2=typdoc&tri_exp3=date_publi&ordre_aff=TA&Fen=Aff&css=../css/VisuRubriqueEncadre.css}}