Alexandre Stegner

+33169335128
CA/DER/LAB/LMD
MEC662 - Hydro, Wind and Marine Resources (2020-2021)
After the course the student should be able to
- - use the basics of fluvial flows and tidal dynamics.
- - understand the dynamics of atmospheric , fluvial or marine boundary layers
- - understand the meteorological forcing and its variability
- - estimate the wind, the fluvial or tidal energy potential of a particular site or region
- - make the distinction between the amount of energy and the power available
- quantify the resource’s availability and its variability
Eligibility/Pre-requisites:
Basic knowledge in fluid mechanics, Bernoulli and Navier-Stokes equations.
Course main content:
The course is divided in three blocs dedicated to hydro , wind and marine resources.
1. 1 Introduction
- Economical, environmental and political issues
- Various units of energy, primary and final energy, capacity of some power plants
1. 2 Hydroelectric resource
- Water cycle, potential temperature, precipitations
- Gravitational energy: resource and energy
- Conventional dam: principle, efficiency, power capacity, capacity factor
- The mean total head H, head loss, maximum flow rate and power
- Environmental impact and carbon budget of hydroelectric power plants
2. Laboratory demonstration (ENSTA)
Observations and quantification of free surface channel flows, fluvial-torrential transition, efficiency of small hydro-dam. Data analysis and personal homework.
3. Fluvial hydraulics
- Flow regimes, Froude number
- Hydraulic load of a free surface flow
- Fluvial-torrential transition
- Hydraulic jump, dissipation
- Energy and momentum conservation
- Run of river electricity: principle, efficiency, power capacity, capacity factor
4. Basic Meteorology and wind resources
- Synoptic winds, global circulation
- local winds: sea breeze, mountain winds, …
- Wind variability, turbulence, Rayleigh decomposition
- Weibull distribution, wind spectra, turbulence intensity
5. Atmospheric or Oceanic boundary layers
- laminar boundary layer
- turbulent boundary layer, logarithmic law
- stable or unstable boundary layers
- wind or hydro measurements within the boundary layer
- On-site resource assessment
6. Wind or river turbines: Betz limits and turbines interactions
- The standard Betz law
- Betz law with a free surface
- Individual turbine wake and multiple turbines interaction
- On-site resource assessment
7. Laboratory demonstration (ENSTA)
Head loss of a free surface flow: fluvial and torrential regime, turbulent boundary layer, bottom roughness, logarithmic law. Data analysis and personal homework.
8. Tidal wave and tidal power
- History: first uses of tidal power
- Astronomical forcing
- Ocean response: Kelvin waves and tidal waves
- Bay or estuary resonance: shallow-water model
- Impact of bottom friction
- Tidal power plant: principle, efficiency, power capacity
- Environmental impact of tidal power plants
9. Tidal currents and tidal turbine
- Tidal turbine: an emerging market
- Tidal currents: variability, coastal amplification, tidal ellipses
- French and UK resources
- Bottom friction and boundary layer profile, turbine wake
- Tidal turbine: principle, efficiency, power capacity, strengths and drawbacks.
Examination and requirements for final grade:
The final grade is a combination of the reports from the laboratory sessions and a 3h individual examination with exercises (open book exam).
Langue du cours : Anglais
Credits ECTS : 4
After the course the student should be able to
- - use the basics of fluvial flows and tidal dynamics.
- - understand the dynamics of atmospheric , fluvial or marine boundary layers
- - understand the meteorological forcing and its variability
- - estimate the wind, the fluvial or tidal energy potential of a particular site or region
- - make the distinction between the amount of energy and the power available
- quantify the resource’s availability and its variability
Eligibility/Pre-requisites:
Basic knowledge in fluid mechanics, Bernoulli and Navier-Stokes equations.
Course main content:
The course is divided in three blocs dedicated to hydro , wind and marine resources.
1. 1 Introduction
- Economical, environmental and political issues
- Various units of energy, primary and final energy, capacity of some power plants
1. 2 Hydroelectric resource
- Water cycle, potential temperature, precipitations
- Gravitational energy: resource and energy
- Conventional dam: principle, efficiency, power capacity, capacity factor
- The mean total head H, head loss, maximum flow rate and power
- Environmental impact and carbon budget of hydroelectric power plants
2. Laboratory demonstration (ENSTA)
Observations and quantification of free surface channel flows, fluvial-torrential transition, efficiency of small hydro-dam. Data analysis and personal homework.
3. Fluvial hydraulics
- Flow regimes, Froude number
- Hydraulic load of a free surface flow
- Fluvial-torrential transition
- Hydraulic jump, dissipation
- Energy and momentum conservation
- Run of river electricity: principle, efficiency, power capacity, capacity factor
4. Basic Meteorology and wind resources
- Synoptic winds, global circulation
- local winds: sea breeze, mountain winds, …
- Wind variability, turbulence, Rayleigh decomposition
- Weibull distribution, wind spectra, turbulence intensity
5. Atmospheric or Oceanic boundary layers
- laminar boundary layer
- turbulent boundary layer, logarithmic law
- stable or unstable boundary layers
- wind or hydro measurements within the boundary layer
- On-site resource assessment
6. Wind or river turbines: Betz limits and turbines interactions
- The standard Betz law
- Betz law with a free surface
- Individual turbine wake and multiple turbines interaction
- On-site resource assessment
7. Laboratory demonstration (ENSTA)
Head loss of a free surface flow: fluvial and torrential regime, turbulent boundary layer, bottom roughness, logarithmic law. Data analysis and personal homework.
8. Tidal wave and tidal power
- History: first uses of tidal power
- Astronomical forcing
- Ocean response: Kelvin waves and tidal waves
- Bay or estuary resonance: shallow-water model
- Impact of bottom friction
- Tidal power plant: principle, efficiency, power capacity
- Environmental impact of tidal power plants
9. Tidal currents and tidal turbine
- Tidal turbine: an emerging market
- Tidal currents: variability, coastal amplification, tidal ellipses
- French and UK resources
- Bottom friction and boundary layer profile, turbine wake
- Tidal turbine: principle, efficiency, power capacity, strengths and drawbacks.
Examination and requirements for final grade:
The final grade is a combination of the reports from the laboratory sessions and a 3h individual examination with exercises (open book exam).
Langue du cours : Anglais
Credits ECTS : 4
PHY530 - Refresher Course in Physics (2020-2021)
MEC655E - Coastal Hydrodynamics (2020-2021)
PHY598 - Internship for Energy Environment (2020-2021)
STEEM-1 internships will start from the end of March and shall last 16 to 20 weeks (4 to 5 months), except somewhat shorter for RENE students.
A STEEM-1 internship must be a research internship.
However, the word research can be appreciated quite widely. It is not necessarily academic research, it may be scientific, technical, industrial or economic research or development, but it is not an execution internship. Indeed, the internship must not consist of carrying out standard works, whether predefined or not, within a department; the internship must have a well-defined objective and must lead to the realization of an original deliverable: a software, an experiment, a study that can be scientific, statistical, economic .... but original!
There is also no restriction on the organization hosting you: academic lab. or company, from start-up to large industrial group, or administration or paraadministrative body.
Fundamentally what is important is to assess the managerial capacity of the host organization. In that respect, we advise against start-up internships during STEEM-1 because the management capacities are there generally insufficient for your benefit and the topic studied to narrow. It will be much more interesting for you to join a startup during the second-year internship then this company will benefit of your previous experience and your scientific background.
The ability to present the progress of your internship and your results clearly and synthetically is also very important. Therefore, the internship ends with a report and an oral defence, see on SynapseS the dedicated advices for these topics.
You will have to choose an internship at the end of December or during January, to this end you will benefit on the web of a lot of information:
- Dedicated proposals received for STEEM students will be posted.
- The list of internships done by STEEM, REST and WAPE students during the previous years.
- The Polytechnique Career Center internship proposals whatever the discipline.
- You may join the LINKEDIN group “Ecole Polytechnique Energy & Environment Master Programs” that gathers a large number of Alumni, Professors and academic or industrial partners
These links will appear in time on your Polytechnique SynapseS account.
Also, do not hesitate to contact your professors.
About the procedure:
- Once you will have found an interesting internship, first contact Alexandre STEGNER for his approval of the subject and of the hosting organisation.
- At the end of November you will receive information about internship contract procedure from Mrs Uyen-Chi NGUYEN, in charge of Master-1 internships.
- A “Convention de Stage” will be signed by you, your host organisation, a STEEM academic referent, and Ecole Polytechnique.
STEEM-1 internships will start from the end of March and shall last 16 to 20 weeks (4 to 5 months), except somewhat shorter for RENE students.
A STEEM-1 internship must be a research internship.
However, the word research can be appreciated quite widely. It is not necessarily academic research, it may be scientific, technical, industrial or economic research or development, but it is not an execution internship. Indeed, the internship must not consist of carrying out standard works, whether predefined or not, within a department; the internship must have a well-defined objective and must lead to the realization of an original deliverable: a software, an experiment, a study that can be scientific, statistical, economic .... but original!
There is also no restriction on the organization hosting you: academic lab. or company, from start-up to large industrial group, or administration or paraadministrative body.
Fundamentally what is important is to assess the managerial capacity of the host organization. In that respect, we advise against start-up internships during STEEM-1 because the management capacities are there generally insufficient for your benefit and the topic studied to narrow. It will be much more interesting for you to join a startup during the second-year internship then this company will benefit of your previous experience and your scientific background.
The ability to present the progress of your internship and your results clearly and synthetically is also very important. Therefore, the internship ends with a report and an oral defence, see on SynapseS the dedicated advices for these topics.
You will have to choose an internship at the end of December or during January, to this end you will benefit on the web of a lot of information:
- Dedicated proposals received for STEEM students will be posted.
- The list of internships done by STEEM, REST and WAPE students during the previous years.
- The Polytechnique Career Center internship proposals whatever the discipline.
- You may join the LINKEDIN group “Ecole Polytechnique Energy & Environment Master Programs” that gathers a large number of Alumni, Professors and academic or industrial partners
These links will appear in time on your Polytechnique SynapseS account.
Also, do not hesitate to contact your professors.
About the procedure:
- Once you will have found an interesting internship, first contact Alexandre STEGNER for his approval of the subject and of the hosting organisation.
- At the end of November you will receive information about internship contract procedure from Mrs Uyen-Chi NGUYEN, in charge of Master-1 internships.
- A “Convention de Stage” will be signed by you, your host organisation, a STEEM academic referent, and Ecole Polytechnique.