Jean-René Chazottes
Chargé de Recherche (CNRS) & Professeur chargé de cours département de mathématiques appliquées

présentation
Jean-René Chazottes est Directeur de Recherche au CNRS et travaille dans le domaine des systèmes dynamiques et des processus aléatoires au Centre de Physique Théorique de l'École polytechnique. Il est également professeur chargé de cours au Département de Mathématiques Appliquées de l'École polytechnique où il enseigne les probabilités et leurs applications.
publications
MAP432 - Modélisation de phénomènes aléatoires (2020-2021)
L’aléa joue un rôle déterminant dans des contextes variés et il est souvent nécessaire de le prendre en compte dans de multiples aspects des sciences de l’ingénieur, citons notamment les télécommunications, la reconnaissance de formes ou l’administration des réseaux. Plus généralement, l’aléa intervient aussi en économie (gestion du risque), en médecine (propagation d’une épidémie), en biologie (évolution d’une population) ou en physique statistique (théorie des transitions de phases). Dans les applications, les données observées au cours du temps sont souvent modélisées par des variables aléatoires corrélées dont on aimerait prédire le comportement. L’objet de ce cours est de formaliser ces notions en étudiant deux types de processus aléatoires fondamentaux en théorie des probabilités : les chaînes de Markov et les martingales. Des applications variées seront présentées pour illustrer ces concepts.
Plan du cours :
1 - Définition des chaînes de Markov et premières applications : équation de la chaleur, ruine du joueur, problème de Dirichlet.
2 - Mesures invariantes : définitions, propriétés et exemples.
3 - Classification des états des chaînes de Markov. Application à la dynamique des populations (processus de branchement) et aux graphes aléatoires.
4 - Théorème ergodique et convergence des chaînes de Markov. Application à l'algorithme PageRank de Google.
5 - Algorithme stochastique de Hasting-Metropolis et recuit simulé. Applications en mécanique statistique et au traitement d'images.
6 - Martingales, temps d'arrêt et convergence.
7 - Applications des martingales aux processus de renforcement et à l'algorithme stochastique de Robbins-Monro.
8 - Stratégies, arrêt optimal et théorie du contrôle stochastique.
Référence bibliographique :
"Promenade aléatoire: chaînes de Markhov et martingales", Thierry Bodineau (2013)
Niveau requis : Bonne connaissance du cours de tronc commun MAP311.
Modalités d'évaluation : Un contrôle classant à la fin du cours. Une évaluation de présence et du travail fourni en Petite Classe.
Langue du cours : Français
Credits ECTS : 5
MAP361 - Aléatoire (2020-2021)
Ce cours introduit les notions de base de la théorie des probabilités, c'est-à -dire l'analyse mathématique de phénomènes dans lesquels le hasard intervient. Il insistera en particulier sur les deux notions majeures qui sont les fondements de cette théorie : le conditionnement et la loi des grands nombres. L'enseignement a pour objectif l'acquisition du raisonnement probabiliste et l'apprentissage de la modélisation probabiliste et de la simulation. Cette modélisation est fondamentale dans de nombreux domaines d'applications. Le cours est illustré par des exemples et des expérimentations numériques. Il introduit aussi quelques notions de la théorie de la mesure (qui est le fondement axiomatique de la théorie des probabilités) et il offre une ouverture vers la statistique. Pendant cet enseignement, les élèves réaliseront un projet de simulation en binôme qui sera pris en compte pour la note du module.
Contenu :
leçon 1 : Exemples de modèles discrets
- probabilité discrète, loi uniforme et calcul combinatoire
- probabilité conditionnelle, probabilités totales, formule de Bayes
- événements indépendants
- lemme de Borel-Cantelli
- lois discrètes, espérance, fonctions génératrices
- loi et espérance conditionnelle pour des lois discrètes
leçon 2 : Probabilités et variables aléatoires réelles
- tribu, tribu borélienne, probabilité (mesure abstraite), espace de probabilité
- variable aléatoire réelle (fonction mesurable)
- fonction de répartition
- variable aléatoire réelle à densité (intégration et dérivation)
- lois uniforme, exponentielle, normale
- simulation par inversion de la fonction de répartition
leçon 3 : Variables aléatoires réelles et vecteurs aléatoires
- espérance (intégrale de Lebesgue pour la mesure abstraite), variance
- calcul de la loi d'une v.a. réelle par la méthode de la fonction muette (changement de variable)
- inégalités : Markov, Jensen, Bienaymé-Chebyshev
- vecteur aléatoire, loi jointe, lois marginales (Fubini)
- espérance, covariance, Cauchy-Schwarz
leçon 4 : Vecteurs aléatoires - Lois conditionnelles
- vecteur aléatoire à densité
- loi et espérance conditionnelle pour des vecteurs à densité
- variables indépendantes
- méthode de simulation par rejet
- somme de variables aléatoires indépendantes : variance, produit de convolution
leçon 5 : Calcul de lois - Vecteurs gaussiens
- calcul de la loi par la méthode de la fonction muette en dimension n (changement de variable)
- algorithme de Box-Muller
- loi gamma, loi chi2
- vecteur gaussien
- régression linéaire
leçon 6 : Convergences - Loi des grands nombres
- convergence d'une suite de v.a. : en probabilité, en moyenne (L1), presque sure
- théorème de convergence dominée
- lois des grands nombres : faible, forte
- application statistique : histogramme, Glivenko-Cantelli
leçon 7 : Convergence en loi - Théorème de la limite centrale
- méthode de Monte Carlo
- convergence en loi : fonction de répartition, théorème de Slutsky
- fonction caractéristique, cas d'une somme de v.a. indépendantes, théorème de Lévy
- théorème de la limite centrale pour des v.a. réelles
leçon 8 : Applications du théorème de la limite centrale : Estimation statistique
- théorème de la limite centrale pour des vecteurs aléatoires
- estimation statistique :
- estimateurs empiriques
- méthode des moments
- estimateur du maximum de vraisemblance
leçon 9 : Statistique : Intervalle de confiance – Sondages - Tests
- intervalles exacts pour le modèle gaussien
- résultats asymptotiques
- applications aux sondages et Monte Carlo
- introduction aux tests d'hypothèses
Crédits ECTS : 5