- Home
- Education
- Academic and Research Departments
- Applied Mathematics Department (DepMAP)
- List of Courses By Tracks
List of courses by tracks
1st year
- APM_1S003_EP (MAA103) : Discrete Mathematics, Guillaume Dujardin, Hasnaa Zidani
- APM_1S006_EP (MAA106) : Introduction to Numerical Analysis, Maxime Breden
- APM_1S007_EP (MAA107) : Mathematical Modeling, Fabrice Djete
2nd year
- APM_2F005_EP (MAA205) : Algorithms for Discrete Mathematics, Kobeissi Ziad, Hugo Chu
- APM_2F010_EP (MAA210) : Probability and Statistics, JM Bardet, Yoan Tardy
- APM_2S051_EP (MAA251) : Num Anal. 2: Linear Algebra and Optimization, Teddy Pichard
3rd year
- APM_3F004_EP (MAA304) : Asymptotic Statistics, Sébastien Gadat, Evgeny Chzen
- APM_3F005_EP (MAA305) : Probability : stochastic processes, Quentin Cormier
- APM_3F007_EP (MAA307) : Convex optimization and Optimal control, Anne Auger
- APM_3F008_EP (MAA308) : Image analysis : Registration, Andres Almansa
- APM_3S012_EP (MAA312) : Numerical Methods for ODEs, Michaël Goldman
Bachelor Thesis, Teddy Pichard
1st year
- APM_3X061_EP (MAP361) - Randomness, Eva Loecherbach, Julien Reygner
This course introduces the basic notions of probability theory, that is the mathematical analysis of phenomena in which chance occurs. The teachers will insist in particular on the two major notions which are the foundations of this theory : conditioning and the law of large numbers.
The teaching aims at the acquisition of probabilistic reasoning and the learning of probabilistic modeling and simulation, as it is fundamental in many applications. The course is illustrated by examples and numerical experiments. It also introduces some notions of measure theory and it offers an opening towards statistics. During this teaching, the students will carry out a simulation project in pairs.
- APM_3X062_EP (MAP361P) - Python, Arvind Singh
2nd year
Period 1 (september to november)
- APM_41012_EP (MAP412) - Introduction to Numerical Analysis: from mathematical foundations to experimentation with Jupyter, Marc Massot
- APM_41033_EP (MAP433) - Statistiques, Aymeric Dieuleveut
- APM_41M01_EP (MAP471A) - Modal - Problem solving in applied mathematics, Lucas Gerin, Teddy Pichard, Ludovic Goudenege
Period 2 (november to february)
- APM_42031_EP (MAP431) - Variational analysis of partial differential equations, Philippe Moireau
- APM_42033_EP (MAP432) - Modelling of random phenomena, Cyril Marzouk
- APM_42034_EP (MAP432) - Modelling of random phenomena, Eva Loecherbach
- APM_42M01_EP (MAP472A) - Modal - Mathematical modelling through the experimental approach, Guillaume Dujardin
Periode 3 (march to may)
- APM_43035_EP (MAP435) - Optimization and control, Grégoire Allaire
- APM_43M01_EP (MAP473B) - Modal - Dynamic systems, applications and simulations, Eric Gourdin
- APM_43M02_EP (MP473D) - Modal - Random numerical simulation around rare events, Gersende Fort
3rd year PA MAP
Period 1 (september to december)
- APM_51050_EP (MAP550) - Théorie des jeux, Charles Bertucci
- APM_51051_EP (MAP551) - Dynamic systems for modelling and simulation of multi-scale reactive media, Marc Massot
- APM_51052_EP (MAP552) - Stochastic Models in Finance, Huyên Pham
- MDC_51006_EP (MAP553) - Foundation of Machine Learning, Erwan Le Pennec
- APM_51055_EP (MAP555) - Signal processing, Rémi Flamary
- APM_51056_EP (MAP556) - Monte Carlo methods, Alain Durmus
- APM_51057_EP (MAP557) - Operational research: mathematical aspects and applications, Stéphane Gaubert
- APM_51059_EP (MAP569) - Regression and classification, Karim Lounici
- APM_51058_EP (MAP564) - Social and communication networks: probabilistic models and algorithms, Laurent Massoulié
- APM_51175_EP (MAP575) - EA - Advanced probability topics, Igor Kortchemski
- APM_52116_EP (MAP576) - EA - Learning theory, Matthieu Lerasle, Laurent Massoulié
- APM_51178_EP (MAP578) - EA - Emerging Topics in Machine Learning P1, Aymeric Dieuleveut, El Mahdi El Mhamdi
- APM_51177_EP - EA - Modeling, estimation, and simulation of climate risks, Gauthier Vermandel
Period 2 (january to march)
- APM_52062_EP (MAP562) - Optimal design of structures, Grégoire Allaire
- APM_52063_EP (MAP563) - Random modelling in biology, ecology and evolution, Vincent Bansaye
- APM_52065_EP (MAP565) - Random and statistical process modelling, Mathieu Rosenbaum
- APM_52066_EP (MAP566) - Statistics in action, Zacharie Naulet
- MDC_52067_EP (MAP567/MAT567) - Transport et diffusion, Teddy Pichard, François Golse, Gaël Raoul
- APM_52068_EP (MAP568) - Uncertainty management and risk analysis, Josselin Garnier
- APM_52067_EP - Optimization for AI, Luiz Chamon, Aymeric Dieuleveut
- APM_52070_EP - Mathematical Foundations of Decision Theory in AI, Luiz Chamon, Alain Durmus
- APM_52071_EP - Optimal control and data assimilation, Philippe Moireau, Hasnaa Zidani
- APM_52009_EP - ML for scientific computing , Hadrien Montanelli, Samuel Kokh, Loïc Gouarin
- APM_52183_EP (MAP583) - EA- A Apprentissage profond
- MAP588 - EA (APM_52188)_EP - Emerging Topics in Machine Learning P2, Rémi Flamary
Period 3 (april to august): research internship
- APM_52992_EP (MAP592) - Modelling and scientific computing, Ludovic Goudenège
- APM_52993_EP (MAP593) - Automation and Operational Research, Stéphane Gaubert, Frédéric Meunier
- APM_52994_EP (MAP594) - Probabilistic and statistical modelling, Aymeric Dieuleveut, Eduardo Abi-Jaber
- APM_52995_EP (MAP595) - Financial mathematics, Eduardo Abi Jaber, Charles-Albert Lehalle et Huyên Pham
3rd year PA IA (Apprentissage et IA)
Period 1 (september to december)
- MDC_51006_EP (MAP553) - Foundations of Machine Learning
- APM_51056_EP 5MAP556) - Probability theory for ML: applications to Monte Carlo methods and generative models
- APM_51059_EP ( MAP569) - Statistical Learning theory
- CSC_51053_EP (INF553) - Database Management Systems
- CSC_51054_EP (INF554) - Machine learning I
- APM_51055_EP (MAP555) - Signal processing: from Fourier to Machine Learning
- APM_51178_EP (MAP578) - Emerging Topics in Machine Learning - Collaborative Learning
Period 2 (january to march)
- APM_52065_EP (MAP565) - Modélisation aléatoire et statistique des processus
- APM_52066_EP ( MAP566) - Statistics in action
- APM_52067_EP - Optimization for AI
- APM_52068_EP ( MAP568) - Gestion des incertitudes et analyse du risque
- APM_52070_EP - Mathematical Foundations of Decision Theory in AI
- APM_52188_EP (MAP588) - Emerging Topics in Machine Learning -Optimal Transport and Interactions with Physical Sciences
- CSC_52072_EP - Graph representaion learning
- CSC_52081_EP (INF581) - Reinforcement Learning and Autonomous Agents
- CSC_52083_EP (INF583) - Systems for Big Data
- CSC_53432_EP - Natural Language Processing and Large Language Models
- CSC_52087_EP (INF581A) - Advanced Deep Learning
- APM_52183_EP (MAP583) - Apprentissage profond: de la théorie à la pratique
Period 3 (april to august): research internship
- APM_52996_EP - Applied Mathematics for AI
- Data Science for Business - X and HEC, Erwan Le Pennec
- Data Science for Finance - X and HEC, Stefano de Marco
- Artificial Intelligence & Advanced Visual Computing, Simsekli Umut
Some courses have benefited from a government grant managed by the ANR under France 2030 with the reference "ANR-22-CMAS-0002"

Applied Mathematics and Statistics
- M1 Applied Mathematics and statistics, Clément Rey
- M2 Data Science, Rémy Flamary, El Mhamdi El Mahdi
- M2 Mathematical modelling, Grégoire Allaire
- M2 Probability and Finance, Huyên Pham
Some courses have benefited from a government grant managed by the ANR under France 2030 with the reference "ANR-22-CMAS-0002"

Mathematics and Applications
M2 Mathematics of Randomness, Matthieu Lerasle
M2 Mathematics for Life Sciences, Eva Loecherbach
- M2 Mathematics, Vision, Learning, Josselin Garnier
- M2 Optimization, Stéphane Gaubert
Support l'X